Final Report

Investigation of Carbon Fiber Composite Cables (CFCC) in Prestressed Concrete Piles

Contract Number BDK83-977-17 FSU Project ID: 031045

Submitted to:

Florida Department of Transportation Research Center 605 Suwannee Street Tallahassee, Florida 32399-0450

Sam Fallaha, P.E. Project Manager FDOT Structures Design Office

Prepared by:

Michelle Roddenberry, Ph.D., P.E. Principal Investigator

Primus Mtenga, Ph.D., P.E. Co-Principal Investigator

Kunal Joshi Graduate Research Assistant

FAMU-FSU College of EngineeringDepartment of Civil and Environmental Engineering2525 Pottsdamer Street, Rm A129Tallahassee, FL 32310-6046

DISCLAIMER

The opinions, findings, and conclusions expressed in this publication are those of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Florida Department of Transportation or the Research and Special Programs Administration. This report does not constitute a standard, specification, or regulation.

The report is prepared in cooperation with the State of Florida Department of Transportation and the U.S. Department of Transportation.

Symbol	When you know	Multiply by	To find	Symbol
		Length		
in.	inches	25.4	millimeters	mm
ft	feet	0.305	meters	m
yd	yards	0.914	meters	m
mi	miles	1.61	kilometers	km
		Area		
in^2	square inches	645.2	square millimeters	mm^2
ft^2	square feet	0.093	square meters	m^2
yd^2	square yard	0.836	square meters	m^2
ac	acres	0.405	hectares	ha
mi^2	square miles	2.59	square kilometers	$\rm km^2$
		Volume		
fl oz	fluid ounces	29.57	milliliters	mL
gal	gallons	3.785	liters	L
ft^3	cubic feet	0.028	cubic meters	m^3
yd^3	cubic yards	0.765	cubic meters	m^3
		Mass		
OZ	ounces	28.35	grams	g
lb	pounds	0.454	kilograms	kg
Т	short tons (2000 lb)	0.907	megagrams	Mg
	Т	emperature		
°F	Fahrenheit	$\frac{5}{9}(F - 32)$	Celsius	°C
	Il	lumination		
fc	foot-candles	10.76	lux	lx
fl	foot-Lamberts	3.426	$\frac{\text{candela}}{\text{m}^2}$	$\frac{cd}{m^2}$
	Force/	Stress/Pressur	e	
lbf	poundforce	4.45	newtons	N
k	kips	4.45	kilonewtons	kN
$\frac{\text{lbf}}{\text{in}^2}$ (or psi)	poundforce square inch	6.89	kilopascals	kPa
$\frac{k}{in^2}$ (or ksi)	kips square inch	6.89	megapascals	MPa

Approximate conversion to SI units

Symbol	When you know	Multiply by	To find	Symbol
		Length		
mm	millimeters	0.039	inches	in.
m	meters	3.28	feet	ft
m	meters	1.09	yards	yd
km	kilometers	0.621	miles	mi
		Area		
mm^2	square millimeters	0.0016	square inches	in^2
m^2	square meters	10.764	square feet	ft^2
m^2	square meters	1.195	square yards	yd^2
ha	hectares	2.47	acres	ac
$\rm km^2$	square kilometers	0.386	square miles	mi^2
		Volume		
mL	milliliters	0.034	fluid ounces	fl oz
L	liters	0.264	gallons	gal
m^3	cubic meters	35.314	cubic feet	ft^3
m^3	cubic meters	1.307	cubic yards	yd^3
Mass				
g	grams	0.035	ounces	OZ
kg	kilograms	2.202	pounds	lb
Mg	megagrams	1.103	short tons (2000 lb)	Т
		Temperatu	re	
°C	Celsius	$\frac{9}{5}C + 32$	Fahrenheit	°F
		Illuminatio	on	
lx	lux	0.0929	foot-candles	fc
$\frac{cd}{m^2}$	$\frac{\text{candela}}{\text{m}^2}$	0.2919	foot-Lamberts	fl
	F	Force/Stress/Pr	ressure	
Ν	newtons	0.225	poundforce	lbf
kN	kilonewtons	0.225	kips	k
kPa	kilopascals	0.145	poundforce square inch	$\frac{lbf}{in^2}$ (or psi)
MPa	megapascals	0.145	kips square inch	$\frac{k}{in^2}$ (or ksi)

Approximate conversion to imperial units

	Techn	nical Report Documentation Page
1. Report No.	2. Government Accession No.	3. Recipient's Catalog No.
4. Title and Subtitle Investigation of Carb Prestressed Concrete P	oon Fiber Composite Cables (CFCC) in iles	5. Report Date April 2014
	Te teport No. 2. Government Accession No. iitle and Subtitle vestigation of Carbon Fiber Composite Cables (CFCC) estressed Concrete Piles uuthor(s) Roddenberry, P. Mtenga, and K. Joshi 'erforming Organization Name and Address MU-FSU College of Engineering partment of Civil and Environmental Engineering 25 Pottsdamer St. Rm. A129 Ilahassee, FL 32310-6046 Sponsoring Agency Name and Address orida Department of Transportation esearch Center 5 Suwannee Street, MS 30 Ilahassee, FL 32399-0450	6. Penoming Organization Code
7. Author(s) M. Roddenberry, P. M	tenga, and K. Joshi	8. Performing Organization Report No. FSU Project ID 031045
9. Performing Organization Name and Address FAMU-FSU College of Engineering Department of Civil and Environmental Engineering		10. Work Unit No. (TRAIS)
Tallahassee, FL 32310	-6046	11. Contract or Grant No. BDK83-977-17
12. Sponsoring Agency Name a Florida Department of Research Center	and Address Transportation	13. Type of Report and Period Covered Final Report November 2011 – April 2014
Tallahassee, FL 32399	MS 30 0-0450	14. Sponsoring Agency Code
13. Supplementally Notes		

16. Abstract

The Florida Department of Transportation (FDOT) commonly uses prestressed concrete piles in bridge foundations. These piles are prestressed with steel strands that, when installed in aggressive or marine environments, are subject to corrosion and therefore rapid degradation. Many solutions may address this issue, but they are not long-term. Hence, it would be desirable to use advanced materials that do not corrode. The goal of this research was to assess the suitability of using carbon fiber composite cables (CFCC), which do not corrode, in lieu of conventional steel prestressing strands.

Five (5) 24-in. square prestressed concrete piles, three (3) 40-ft long and two (2) 100-ft long, were cast using 0.6-in. diameter CFCC strands produced by Tokyo Rope Manufacturing Company. A special anchoring system was used because CFCC strands cannot be conventionally gripped using wedges and a jack. The techniques employed to prestress these strands were documented, as well as the unique aspects involved in constructing and precasting CFCC-prestressed piles. During strand detensioning, stresses were monitored in the concrete at the piles' ends to determine the transfer length of CFCC strands, as a means of evaluating their bond characteristics.

Development length tests and flexural tests were performed on two (2) of the 40-ft piles at the FDOT Marcus H. Ansley Structures Research Center to further assess the performance of the CFCC strands. Lastly, the two (2) 100-ft piles were driven at a bridge construction site, adjacent to standard steel-prestressed concrete piles. During driving operations, the behavior of the piles was monitored using embedded data collectors and a Pile Driving Analyzer®.

The precasting efforts and test results show that the performance of piles prestressed with CFCC strands is comparable to those prestressed with steel. Using CFCC strands in prestressed concrete piles for bridge foundations, particularly in harsh environments, could potentially result in bridges that require less maintenance and have longer lifespans.

17. Key Word prestressed concrete pile, CFCC, C	FRP	18. Distribution Statement No restrictions.		
19. Security Classif. (of this report) 20. Security Classif. (c		of this page)	21. No. of Pages	22. Price
Unclassified.	fied.	307		
Form DOT F 1700.7 (8-72) Reprod	uction of completed pa	ge authorized		

ACKNOWLEDGEMENTS

The authors would like to thank the Florida Department of Transportation (FDOT) for providing the funding for this project, as well as the FDOT Structures Research Center team. In particular, Sam Fallaha deserves considerable credit for the success of this research, due to his initiative and unfaltering guidance. Much appreciation also goes to William Potter for his insight and valuable discussions throughout the project, as well as to Chris Weigly for his ebullience and for lending his data acquisition expertise on a long, July day. Thanks go also to Rodrigo Herrera for his provess on geotechnical and pile driving matters and for his data analyses and report.

Gate Precast Company's team at the Jacksonville, Florida, plant deserves plenty of recognition for their role in making the research sound. Tom Newton and Scott Henning were exceptionally professional and accommodating, while the unique details required for constructing the precast concrete piles were worked out. Wendell Crews and Zulfin Masinovic showed much enthusiasm and patience, and they made the work enjoyable.

Thanks go to Mohamad Hussein at GRL Engineers, Inc., and Don Robertson and Harold Dohn at Applied Foundation Testing, Inc., for providing pile driving testing services. Thanks also go to Jonathan Chipperfield and Raphael Kampmann for their moral support, help with specimen construction, and instrumentation installation.

EXECUTIVE SUMMARY

The Florida Department of Transportation (FDOT) commonly uses prestressed concrete piles in bridge foundations. These piles are prestressed with steel strands that, when installed in aggressive or marine environments, are subject to corrosion and therefore rapid degradation. Many solutions may address this issue, but they are not long-term. Hence, it would be desirable to use advanced materials that do not corrode. The goal of this research was to assess the suitability of using carbon fiber composite cables (CFCC), which do not corrode, in lieu of conventional steel prestressing strands.

Five (5) 24-in. square prestressed concrete piles, three (3) 40-ft long and two (2) 100ft long, were cast using 0.6-in. diameter CFCC strands produced by Tokyo Rope Manufacturing Company. A special anchoring system was used because CFCC strands cannot be conventionally gripped using wedges and a jack. The techniques employed to prestress these strands were documented, as well as the unique aspects involved in constructing and precasting CFCC-prestressed piles. During strand detensioning, stresses were monitored in the concrete at the piles' ends to determine the transfer length of CFCC strands, as a means of evaluating their bond characteristics.

Development length tests and flexural tests were performed on two (2) of the 40–ft piles at the FDOT Marcus H. Ansley Structures Research Center to further assess the performance of the CFCC strands. Lastly, the two (2) 100–ft piles were driven at a bridge construction site, adjacent to standard steel–prestressed concrete piles. During driving operations, the behavior of the piles was monitored using embedded data collectors and a Pile Driving Analyzer[®].

The precasting efforts and test results show that the performance of piles prestressed with CFCC strands is comparable to those prestressed with steel. Using CFCC strands in prestressed concrete piles for bridge foundations, particularly in harsh environments, could potentially result in bridges that require less maintenance and have longer lifespans.

TABLE OF CONTENTS

D	isclai	mer	i
SI	Con	version Factor	i
Te	echni	cal Report Documentation Page	7
A	cknov	\mathbf{v} ledgements \mathbf{v}	i
Ez	xecut	ive Summary	i
Li	st of	Figures	i
Li	st of	Tables	i
1	INT	RODUCTION	
	1.1	General	L
	1.2	Problem Statement	L
	1.3	Research Objectives	3
	1.4	Report Organization	}
2	LIT	ERATURE REVIEW	Ł
	2.1	Introduction	1
	2.2	Fiber Reinforced Plastic (FRP) 44	1
	2.3	Carbon Fiber Composite Cables (CFCC)	3
	2.4	Transfer Length and Development Length Background)
	2.5	Research Performed on Transfer and Development Lengths of CFRP Strands	Ĺ
	2.6	Other CFCC Coupling Method 18	3
	2.7	Flexure Test	

3	$\mathbf{M}\mathbf{A}'$	TERIALS AND INSTRUMENTATION	24
	3.1	Introduction	24
	3.2	Prestressing Strands	24
	3.3	Coupling Device Anchorage System	25
	3.4	Concrete	27
	3.5	Instrumentation	28
		3.5.1 Strain Gages	28
		3.5.2 Deflection Gages 22	29
		3.5.3 Embedded Data Collectors (EDC)	29
		3.5.4 Pile Driving Analyzer [®] (PDA) $\ldots \ldots $	30
4	TES	ST SPECIMEN PRODUCTION	31
	4.1	Introduction	31
	4.2	Coupling at the FDOT Lab	32
	4.3	Pile Specimen Configuration 3	32
	4.4	Prestressing Losses	33
	4.5	Pile Casting Bed Setup 3	35
		4.5.1 Stressing Forces	35
		4.5.2 Wooden Headers	36
		4.5.3 Prestressing Bed Layout	37
	4.6	Strand Installation	37
	4.7	Coupler Staggering	38
	4.8	Coupler Installation Procedures	40
		4.8.1 Setting the Anchoring Device	40
		4.8.2 Setting Wedges and Sleeve Toward CFCC	42
		4.8.3 Finishing the Coupler Installation	43
	4.9	Stressing the Strands	45
	4.10	Installation of Spirals and EDC	48
	4.11	Concrete Placement	49
	4.12	Stress Release	50
5	EXI	PERIMENTAL PROGRAM	53
	5.1	Transfer Length Tests 5	53
		5.1.1 Introduction $\ldots \ldots $	53
		5.1.2 Test Setup and Instrumentation	53
	5.2	Development Length and Flexure Tests	56

		5.2.1	Introduction	56
		5.2.2	Test Matrix and Setup	56
		5.2.3	Instrumentation for the Development Length Tests	58
		5.2.4	Instrumentation for Flexure Test	60
		5.2.5	Test Procedure for Development Length and Flexure Tests $\ .$.	62
	5.3	Pile D	Driving Test Setup	63
6	EX	PERIN	MENTAL TEST RESULTS	64
	6.1	Introd	luction	64
	6.2	Trans	fer Length Measurements	64
		6.2.1	General	64
		6.2.2	Measured Strains at Transfer	65
	6.3	Devel	opment Length Test Results	71
		6.3.1	Test 1 \ldots	71
		6.3.2	Test 2	74
	6.4	Flexu	ral Strength Test Results	76
	6.5	Pile D	Driving Test Results	79
		6.5.1	Introduction	79
		6.5.2	Embedded Data Collectors (EDC) Results	79
		6.5.3	Pile Driving Analyzer [®] (PDA) Results $\ldots \ldots \ldots \ldots$	79
		6.5.4	FDOT Summary Report	80
7	DIS	SCUSS	ION	81
	7.1	Introd	luction	81
	7.2	Trans	fer Length of CFCC	81
	7.3	Devel	opment Length Tests	82
	7.4	Flexu	ral Strength Tests	83
	7.5	Pile D	Driving Tests	84
	7.6	Lesson	as Learned from First Attempt to Prestress	84
8	SUI	MMAI	RY AND CONCLUSIONS	88
	8.1	Summ	nary	88
	8.2	Concl	usions	89
		8.2.1	Transfer Length of CFCC	89
		8.2.2	Development Length of CFCC	89
		8.2.3	Flexural Strength of CFCC–Prestressed Pile	89

	8.2.4	Pile Driving 90
	8.2.5	Specimen Production
8.3	Sugges	stions for Future Research
Bibliog	graphy	
Appen	dices .	
Appen	dix A	CFCC Product Information
Appen	dix B	Concrete Mix Design
Appen	dix C	Strand Template Layout and Pile Details
Appen	dix D	Prestress Loss Calculations
Appen	dix E	Pile Driving Tests and Reports
Appen	dix F	Moment Capacity Calculations
Appen	dix G	Report on First Pile Casting Attempt
Appen	dix H	Photos

LIST OF FIGURES

1.1	Splash zone corrosion	2
2.1	FRP stress-strain relationships	5
2.2	Corrosion-resistant ground anchors made of CFCC (Source: Tokyo Rope)	8
2.3	Load and elongation diagram	8
2.4	Variation of strand stress within the development length	9
2.5	Transfer length test results	12
2.6	Experimental setup	13
2.7	Crack pattern observed by Zaki	14
2.8	Bridge Street Bridge plan view showing conventional span A next to CFRP span B	16
2.9	Carbon fiber reinforced double-T beam cross section	17
2.1	0 Pretensioning using steel couplers by Grace	19
2.1	1 Load setup for decked bulb-T beams	20
2.1	2 Behaviour of CFCC in comparison with steel strands	20
2.1	3 HEM coupling method	21
2.1	4 Flexure test used to evaluate development length	22
2.1	5 Pile sections	22
3.1	A typical stressing bed schematic	25
3.2	Open grip	26
3.3	Tokyo Rope coupling device	26
3.4	Construction of buffer material	27
3.5	Typical volume percentage of constituents in SCC and traditional con- crete	28
3.6	Strain gage schematic	29
3.7	Typical EDC set of instruments	30
4.1	Setup for coupling demonstration	32

4.2	Section view of the pile specimens. (See Appendices A and C for manufactured dimensions.)	33
4.3	FDOT standard pile details	33
4.4	Steel header replaced with wooden header	36
4.5	Stressing bed schematic at Gate Precast Company	37
4.6	Assembly to lay strands	38
4.7	CFCC strand stagger pattern, viewed from both ends	39
4.8	Coupler stagger pattern, plan view of both ends	39
4.9	Wrapping the buffer material (Source: Tokyo Rope)	40
4.10	Spraying molybdenum on the sleeves (Source: Tokyo Rope)	41
4.11	Installing sleeve and the braided grip	41
4.12	Wedge setup	42
4.13	Wedge installation	43
4.14	Steel strand installation	43
4.15	CFCC coupled with steel strand \ldots	44
4.16	Coupler view after stagger	44
4.17	Stressing sequence, at stressing end, looking towards pile	45
4.18	Staggered couplers after initial pretensioning	46
4.19	Target forces and strand numbers at stressing end \ldots \ldots \ldots \ldots	47
4.20	Installation of stirrups (Source: ACI)	48
4.21	EDC clamped with a rubber material	49
4.22	Casting using SCC	50
4.23	Curing	51
4.24	Strand cutting sequence	51
4.25	Different strand cut method	52
5.1	Strain gage layout on top of pile for transfer length test	54
5.2	Strain gage numbering for transfer length test	55
5.3	Typical EDC layout	55
5.4	EDC installation	55
5.5	Test setups	57
5.6	Loading setup	58
5.7	Gage layout for development length tests	59
5.8	Strand slip measurement device	59
5.9	A pile being tested for development length	60
5.10	Gage layout for flexure test (Not to scale)	61

5.11	Laser device setup for measuring displacement	61
5.12	Test setup for flexural test	62
6.1	Strain gage layout at stressing end	65
6.2	Strain profile for pile 3 at release	66
6.3	Strain profile for pile end $3N$ at 75% stress release	66
6.4	Strain profile for pile end $3N$ at 100% stress release \ldots \ldots \ldots	67
6.5	Strain profile for pile end $3S$ at 75% stress release \ldots \ldots \ldots	67
6.6	Strain profile for pile end $3S$ at 100% stress release $\ldots \ldots \ldots$	67
6.7	Strain profile for pile end $4N$ at 75% stress release	68
6.8	Strain profile for pile end $4N$ at 100% stress release \ldots \ldots \ldots	68
6.9	Strain profile for pile end $4S$ at 75% stress release \ldots \ldots \ldots	68
6.10	Strain profile for pile end $4S$ at 100% stress release $\ldots \ldots \ldots$	69
6.11	Strain profile for pile end $5N$ at 75% stress release	69
6.12	Strain profile for pile end 5N at 100% stress release \ldots	69
6.13	Strain profile for pile end 5S at 75% stress release $\ldots \ldots \ldots \ldots$	70
6.14	Strain profile for pile end 5S at 100% stress release $\ldots \ldots \ldots$	70
6.15	Load vs. Deflection for Test 1	72
6.16	Failure crack pattern on east face for Test 1	72
6.17	Failure crack pattern on west face for Test 1	73
6.18	Load vs. Strain for Test 1	73
6.19	Load vs. Deflection for Test 2	74
6.20	Concrete crushing at top in Test 2	75
6.21	Failure crack pattern on east face for Test 2	75
6.22	Failure crack pattern on west face for Test 2	76
6.23	Load vs. Deflection for flexure test	77
6.24	Failure crack pattern on east face for flexure test	77
6.25	Failure crack pattern on west face for flexure test	78
6.26	Failure under one of the load points	78
7.1	Stressing sequence for first casting attempt	85
7.2	Mesh sheet installation technique	86
7.3	Wedge installation method	87
H.1	Spool of CFCC strand	269
H.2	Steel header used for a conventional steel-prestressed concrete pile (Re- placed by wooden header for this research	269

H.3	View of precasting bed, showing wooden headers	270
H.4	View of precasting bed, showing bundle of CFCC spirals	270
H.5	Casting bed with wooden headers and installed CFCC strands \ldots .	271
H.6	Couplers, before installation	271
H.7	CFCC wedges sprayed with Molybdenum Disulfide	272
H.8	CFCC coupler installation: wrapping the CFCC strand with mesh	272
H.9	CFCC coupler installation: installing braid grip on CFCC strand	273
H.10	CFCC coupler installation: placing wedges on mesh-wrapped CFCC strand	273
H.11	CFCC coupler installation: marking wedges to prepare for pushing	274
H.12	CFCC coupler installation: coupler in jacking system, ready for pushing	z274
H.13	CFCC coupler installation: pushing wedges into coupler with jacking system	275
H.14	CFCC coupler installation: ready to screw two parts together	275
H.15	CFCC coupler installation: screwing two parts together	276
H.16	CFCC coupler installation: partially-completed couplers, showing 3 stages of installation	276
H.17	CFCC coupler installation: several partially-completed couplers in pre- casting bed	277
H.18	CFCC coupler installation: showing several couplers in casting bed .	278
H.19	Partial installation of several couplers	278
H.20	Stressing end of self-stressing casting bed	279
H.21	Non-stressing end of self-stressing casting bed	279
H.22	CFCC spirals zip-tied to strands	280
H.23	Lifting loops	280
H.24	Showing staggered couplers, with CFCC strands already stressed, look- ing from stressing end	281
H.25	Showing staggered couplers and close-up of coupler, with CFCC strands already stressed	281
H.26	CFCC strands, spirals, and wooden headers in position; ready to cast	282
H.27	Casting piles using self-consolidating concrete	282
H.28	Strain gages S301 - S314	283
H.29	Strain gages S320 - S326	283
H.30	Cutting CFCC strands with a side grinder	284
H.31	End bent 3-1 on westbound bridge; Two 100-ft piles ready to be driven	286
H.32	Smoke during Pile 1 driving	286

H.33 Charred pile cushion, after Pile 1 driving	287
H.34 Concrete spalling on head of Pile 1 after being driven	287
$\rm H.35$ Leaked diesel and concrete spalling on head of Pile 1 after being driven	288
H.36 Smoke during Pile 2 driving	288
H.37 Concrete spalling on head of Pile 2 during driving	289
H.38 Horizontal (tension) crack in Pile 2	289
H.39 Horizontal (tension) crack in Pile 2, on other side	290

LIST OF TABLES

2.1	CFCC standard specification	7
4.1	Force and elongation measurements	47
5.1	Test matrix	58
$\begin{array}{c} 6.1 \\ 6.2 \end{array}$	Transfer length for specimen pile ends	70 79
$7.1 \\ 7.2$	Development length predictions	83 83

CHAPTER 1

INTRODUCTION

1.1 General

Durability, low maintenance, and safety of bridge structures are top priorities for any owner, including the Florida Department of Transportation (FDOT). Failure of a bridge component can cause the entire structure to fail, especially when it occurs in the foundation. In Florida, many bridge foundations are subjected to harsh marine environments, which can result in expensive maintenance issues and shortened bridge life. In particular, prestressed concrete pile foundations degrade quickly when their steel prestressing strands corrode.

Replacement of pile foundations is difficult because of the superstructure resting on them; outrigger piles can be placed instead, but they are expensive and unsightly. Alternatives to replacing the piles include protecting the pile with shielding or wrapping the pile with anti-corrosive material, but these alternatives are also expensive and do not provide a long-term solution.

Current research is testing the performance of advanced materials as an alternative to steel reinforcement or prestressing. These materials are, more specifically, fiber reinforced plastics (FRP). One of the potential alternatives is carbon fiber composite cables, as they have high resistance to corrosion. The material is a relatively new technology, and research is needed so that designers can gain confidence in this material as a substitute for steel reinforcement or prestressing.

1.2 Problem Statement

Prestressed concrete piles are a common foundation type for Florida bridges due to their economy of design, fabrication, and installation. The piles are prestressed with high-strength, prestressing steel strands and are fabricated under controlled conditions in a casting yard. However, they are often exposed to salt water (aggressive) environments, which results in rapid degradation. The major area of concern is near the water level, also called the "splash zone" (Figure 1.1). In this area, the concrete

Figure 1.1: Splash zone corrosion

experiences periodic wet and dry spells. Consequently, salt deposits on the concrete surface and slowly penetrates the concrete, resulting in corrosion of the prestressed steel strands. This causes loss of concrete material surrounding the strand due to spalling of the concrete and a loss of the steel cross–sectional area. The bridge may no longer be usable, or may require major retrofitting to strengthen the piles, which is very expensive.

A potentially good alternative to prestressed steel strands, especially for piles in aggressive environments, would be carbon fiber composite cables (CFCC). CFCC strands are highly resistant to corrosion and are reported by manufacturers to have higher bond strength to concrete than steel strands. The cost of CFCC is currently higher than steel strands; however, the cost of prestressing strand materials is a relatively small percentage of a bridge's overall cost. Also, the higher initial cost of CFCC would likely be paid back with the long-term benefit of prolonged maintenance-free bridge life.

The use of CFCCs in marine environments holds much promise. For FDOT and bridge designers to use CFCC piles in lieu of conventionally-prestressed concrete piles, some study and testing are needed.

1.3 Research Objectives

The goal of this study was to assess the suitability of using CFCC strands in Florida Department of Transportation (FDOT) bridge construction projects where piles are used, and to determine if CFCC strands are a viable alternative to conventional steel strands. Positive results would benefit FDOT and bridge designers by providing empirical evidence and by giving them confidence in CFCC-prestressed pile designs. Most importantly, the use of CFCC piles, due to their non-corrosive properties, would require less maintenance than steel-stranded piles and would result in bridges with longer lifespans.

The objectives of this research were as follows:

- 1. To determine the transfer length of the CFCC strands
- 2. To determine the development length of the CFCC strands
- 3. To investigate the flexural capacity of CFCC-prestressed piles
- 4. To investigate the driveability of CFCC piles

To accomplish the objectives, several tasks were completed. Three (3) 40-ft-long and two (2) 100-ft-long, 24-in. square prestressed concrete piles were cast, using CFCC for the prestressing strands and spiral reinforcement. Precasting operations were observed and documented. The 40-ft piles were monitored for transfer length while the strands were cut during prestressing operations. They were also tested in flexure in a laboratory to measure the CFCC strand's development length and the pile's flexural capacity. Later, the 100-ft piles were driven at a bridge construction site.

1.4 Report Organization

This report is organized into chapters as follows. A review of literature is presented in Chapter 2. The material properties, anchorage system, and instrumentation are described in Chapter 3. Chapter 4 is a documentation of the construction of the test piles. The test program and results are presented in Chapters 5 and 6, respectively, for transfer length measurements, development length tests, flexural strength tests, and pile driving tests. The results are discussed in Chapter 7, followed by a summary and conclusions in Chapter 8.

CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Many studies, both analytical and experimental, have reported on strand bond properties, transfer length, development length, flexural strength of prestressed members, and prestressing losses in concrete members. This chapter will describe the general properties of advanced materials recently introduced as an alternative to steel for overcoming the major issue of corrosion. The advanced materials described in this chapter are Fiber Reinforced Plastics (FRP), one of which is used in this study to prestress five (5) precast concrete piles. Included in this chapter is recent work that has been conducted to test FRPs on the above-mentioned properties.

2.2 Fiber Reinforced Plastic (FRP)

Fiber Reinforced Plastic materials are extensively used and have revolutionized the construction industry. They offer an alternative to steel as reinforcement for concrete structures. FRPs are composite materials consisting of synthetic or organic high–strength fibers that are impregnated within a resin material. They can be manufactured in the form of rods, grids, and cables of various sizes and shapes. The fiber portion of these materials can be made of aramid, glass fibers, or carbon with each having different material properties. However, there are disadvantages of using the fiber-reinforced polymer, including:

- 1. High cost (5 to 15 times that of steel)
- 2. Low modulus of elasticity (for aramid and glass FRP)
- 3. Low ultimate failure strain

- 4. High ratio of axial-to-lateral strength, causing concern for anchorages for FRP used as prestressing
- 5. Long-term strength can be lower than the short-term strength for reinforcement due to creep rupture phenomenon (for FRP reinforcement).
- 6. Susceptibility of FRP to damage by ultra-violet radiation
- 7. Aramid fibers can deteriorate due to water absorption.
- 8. High transverse thermal expansion coefficient, compared to concrete

Tensile properties of reinforcement made from Carbon Fiber Reinforced Plastic (CFRP), Aramid Fiber Reinforced Plastic (AFRP), and Glass Fiber Reinforced Plastic (GFRP) are compared to steel in Figure 2.1. Steel exhibits ductile behavior, while the other materials do not.

Figure 2.1: FRP stress-strain relationships (Domenico, 1995)

2.3 Carbon Fiber Composite Cables (CFCC)

Carbon fibers can be produced from two (2) materials. The most common textile material is poly–acrylonitrile based (PAN–based). The other is a pitch–based material, which is a by–product of petroleum refining or coal coking. Carbon fibers have exceptionally high tensile strength–to–weight ratios, with a strength ranging from 1970 to 3200 MPa (286 to 464 ksi) and a tensile modulus ranging from 270 to 517 GPa (39,160 ksi to 74,984 ksi). These fibers also have a low coefficient of linear expansion, on the order of 0.2×10^{-6} m/m/degree Celsius, and high fatigue strength. However, disadvantages are their low impact resistance, high electrical conductivity, and high cost.

Commercially–available CFRP prestressing tendons are available under the brand names of Carbon Fiber Composite Cable (CFCC) by Tokyo Rope (Japan), Leadline by Mitsubishi Kasai (Japan), Jitec by Cousin Composites (France), and Bri-Ten by British Ropes (United Kingdom).

Carbon Fiber Composite Cables (CFCC), currently patented in ten (10) countries in the world, are reinforcing cables formed using carbon fibers and thermosetting resins. Made in Japan by Tokyo Rope Manufacturing Company, Ltd. (Tokyo Rope), CFCCs use PAN-type carbon fibers supplied by Toho Rayon. A roving prepreg process manufactures individual wires where the epoxy resin is heat cured. The prepreg is twisted to create a fiber core and is then wrapped with synthetic yarns. The purpose of the yarn is to protect the fibers from ultra-violet radiation and mechanical abrasion, and to improve the bond properties of the wire to concrete.

Tokyo Rope currently produces cables with diameters ranging from 5 to 40 mm and in any length up to 600 meters. Cables are then made from one (1), seven (7), 19, or 37 wires and are twisted to allow better stress distribution through the cross section (Table 2.1). See Appendix A for product information. The tensile strength of a 12.5– mm diameter CFCC is 2.69 kN/mm², and the tensile elastic modulus is 155 GPa. The thermal coefficient of expansion is approximately 0.62×10^{-6} /degrees Celsius which is about $1/20^{th}$ that of steel. The relaxation is about 3.5% after 30 years at 80% of the ultimate load; this is about 50% less than that of steel. Also, from the technical data on CFCC provided by Tokyo Rope, pull-out tests show that CFCC has bond strength to concrete of 6.67 MPa, which is more than twice that of steel.

CFCC is lightweight and has very high corrosion resistance. The cable's twisted strands make it easy to handle, as it can be coiled. These features of CFCC make it useful for various applications such as:

- 1. Reinforcement of structures in corrosive environments
- 2. Corrosion–resistant ground anchors (Figure 2.2)

Designation (Configuration diameter) 呼 称		Diameter 直径 (mm)	Effective cross sectional area 有効断面積 (mm ²)	Guaranteed capacity 保証破断荷重 (RN)	Nominal mass density* 単位長さ質量 (g/m)	Tensile elastic modulus 鲜性保政 (kN/mm ^a)
•	U 5.0¢	5.0	15.2	38	30	167
	1×7 7.5¢	7.5	31.1	76	60	155
	1×7 10.5¢	10.5	57.8	141	111	155
-	. 1×7 12.5¢	12.5	76.0	184	145	155
	1×7 15.2¢	15.2	115.6	270	221	155
	1×7 17.2¢	17.2	151.1	350	289	155
3.5	1×19 20.5¢	20.5	206.2	316	410	137
	1×19 25.5¢	25.5	304.7	467	606	137
	1×19 28.5¢	28.5	401.0	594	777	137
ARD.	1×37 35.5¢	35.5	591.2	841	1,185	127
	1×37 40.0¢	40.0	798.7	1,200	1,529	145

Table 2.1: CFCC standard specification (Source: Tokyo Rope)

3. Reinforcement of non-magnetic structures

New Standard specification of CFCC 標準仕様

- 4. Cables where reduced sag from self–weight is desired
- 5. Applications that benefit from low linear expansion
- 6. Structures and construction that benefit from lightweight materials

As illustrated by Figure 2.3, CFCC does not yield before failing like steel does, but fails immediately once it reaches the maximum capacity.

Figure 2.2: Corrosion-resistant ground anchors made of CFCC (Source: Tokyo Rope)

Figure 2.3: Load and elongation diagram (Source: Tokyo Rope)

2.4 Transfer Length and Development Length Background

The transfer length is the length of the strand over which the prestressing force is fully transferred to the concrete. In other words, it is the distance along the member in which the effective prestressing force is developed. The transfer length of a prestressing strand is influenced by the Hoyer effect, which is caused by swelling of the strand in the transfer zone after release as a result of Poisson's ratio. During transfer, the induced confining stresses normal to the tendon enhance the bond strength at the interface, since the lateral deformation is resisted by the surrounding concrete.

The additional length required to develop the strand strength from the effective prestressing stage to the ultimate stage is called the flexural bond length. The sum of these two lengths is called the development length. These lengths are explained by Cousins et al. (1990) and shown in Figure 2.4.

Figure 2.4: Variation of strand stress within the development length (Cousins et al., 1990)

Different tests have been standardized to examine these aspects of prestressing in concrete, including flexural bond tests and transfer length tests. The American Concrete Institute (ACI) suggests that the transfer length of any FRP varies with the condition of the FRP, the stress in the FRP, the strength and cover of the concrete, and the method used to transfer the FRP force to the concrete. In general, a prestressing rod having a smooth surface will require a longer transfer length than a rod with a rough, irregular surface. The transfer length also varies with the method used to release the initial prestress. For example, a greater transfer length will be observed if the release of tension is sudden rather than gradual, and higher initial prestress will require greater transfer length. In general, the bond of FRP tendons is influenced by the following parameters as given by ACI (2004):

- 1. Tensile strength [600 to 3000 MPa (87,000 to 435,000 psi)]
- 2. Hoyer effect
- 3. Cross-sectional shape
- 4. Surface preparation (braided, deformed, smooth)
- 5. The method of force transfer
- 6. Concrete strength and cover

The American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications (AASHTO, 2011) state that the transfer length for a steel strand should not exceed 60 times its diameter, while the flexural design guidelines in Section 12.9 of ACI 318-11 recommend using Equation 2.1 for estimating the transfer length.

$$L_t = \frac{1}{3} f_{se} d_b \tag{2.1}$$

where $L_t = \text{transfer length (in.)}$ $f_{se} = \text{effective stress after losses (ksi)}$ $d_b = \text{strand diameter (in.)}$

Even though there are many factors affecting the transfer length, according to AASHTO LRFD and ACI, the transfer length is primarily governed by either one or two parameters.

Development length is the total embedment length of the strand that is required to reach a member's full design strength at a section. According to ACI 318-11 and

AASHTO LRFD, development length may be calculated using Equation 2.2:

$$L_d = \frac{1}{3} f_{se} d_b + (f_{ps} - f_{se}) d_b$$
(2.2)

where

 $L_d = \text{development length (in.)}$

 f_{ps} = prestress in steel at the time for which the nominal resistance of the member is required (ksi)

In Equation 2.2, the first term is the ACI expression for the transfer length of the prestressing strand, while the second term is its flexural bond length.

2.5 Research Performed on Transfer and Development Lengths of CFRP Strands

Mahmoud et al. (1999) tested 52 concrete beams which were pretensioned using three (3) different types of prestressing. The tests were performed to observe the behavior of the three (3) materials with respect to transfer and development length. The materials used were lead line bars, CFCC strands, and steel strands. The researchers tested the simply-supported beams in flexure, by applying a one-point load and by varying the shear spans. The results showed that the strand diameter d_b , the initial prestressing level f_{pi} , and the concrete compressive strength at transfer f'_{ci} directly affect the transfer length of the CFRP prestressing strand. Equation 2.3 was proposed to predict transfer length.

$$L_t = \frac{f_{pi}d_b}{\alpha_t f_{ci}^{\prime \ 0.67}} \tag{2.3}$$

A regression analysis of the test data was performed and resulted in a value of 4.8 (using MPa and mm units) or 25.3 (using psi and in. units) for the constant α_t for CFCC. The researchers concluded that the characteristics of the CFRP cause reduction of the transfer length in comparison with a 7-wire or equivalent number of steel strands (Figure 2.5). In particular, the modulus of elasticity for CFCC is about 79% of that for steel strands which causes more friction between the strand and the concrete during prestress release. This friction arises from the lateral strains caused by the longitudinal strains that occur in the prestressing.

The researchers also studied the effects of confinement on the transfer length and on the flexural bond length by testing six (6) beams that were pretensioned with CFCC, had no shear reinforcement, and provided a concrete cover of four times the strand

(b) Transfer length correlation for Leadline bars and CFCC strands

Figure 2.5: Transfer length test results (Mahmoud et al., 1999)

diameter. They compared the results with other beams reinforced with steel, and the results showed that, although there were no splitting cracks within the transfer zone, the transfer length of the CFCC increased by 17% while the flexural bond length increased by 25% (Mahmoud et al., 1999). The concrete cover of four (4) times the strand diameter, without any shear reinforcement, clearly affects the bond characteristics of the CFCC. Research by Mahmoud and Rizkalla (1996) on 24 rectangular-shaped pretensioned concrete beams was conducted to determine the transfer and development lengths of CFRP. Out of the 24 beams, 16 were reinforced with a single CFCC strand. The beams were tested in flexure under the MTS (Mechanical Testing System) machine by applying a point load, at the designated embedment length (as illustrated in Figure 2.6) and at the mid span of the beam. From the test results, they proposed a development length equation for CFRP prestressing strands:

$$L_d = \frac{f_{pi}d_b}{\alpha_t f_{ci}^{\prime \ 0.67}} + \frac{(f_{pu} - f_{se})d_b}{\alpha_f f_c^{\prime \ 0.67}}$$
(2.4)

where

 f_{pi} = initial prestressing stress f_{ci} = concrete strength during release f_c = concrete strength at time of loading f_{pu} = ultimate tensile strength of the CFCC f_{pe} = effective prestressing stress α_f = 2.8 (MPa and mm units) or 14.8 (psi and in. units) for CFCC

Figure 2.6: Experimental setup (Mahmoud et al., 1999)

It was observed that the beams with embedment length less than the development length failed after flexure and shear cracking, due to slippage of the strand at one or both ends of the beam. Beams with sufficient embedment length failed due to strand rupture at the location of the load point. The beams displayed extensive flexural cracking extending up to the compression zone at the top surface (Figure 2.7). They showed that the transfer length of CFCC strand was about 50% of the ACI prediction for an equivalent steel strand for concrete strength of 35 MPa at transfer.

The test setup used by the researchers was used in our study to assess the development length of CFCC via flexural tests. From their proposed model, it is evident that the transfer length is a function of f'_{ci} , as the increase in concrete strength gives a shorter transfer length due to the improved bond characteristics.

Figure 2.7: Crack pattern observed by Zaki (Mahmoud and Rizkalla, 1996)

Issa et al. (1993) performed transfer length testing on GFRP strands. The researchers used 6–in. x 4–in. specimens for two concentric 3/8–in. diameter S-2 glass epoxy strands. The strands were prestressed to 50% of their ultimate strength. The transfer length observed was 10 to 11 in., or, in other words, 28 times the nominal diameter of the tendons. This demonstrates that the transfer length for FRP strands is much shorter than for steel strands.

Taerwe et al. (1992) used transfer prisms to determine the transfer length of Aramid composite prestressing bars embedded in concrete prisms. Arapree AFRP bars with a sand coating were used in the program. The bars were 7.5 and 5.3 mm in diameter. The concrete strength used for the specimen construction was varied between 71.6 and 81.5 MPa, and the strands were stressed to 50% of the ultimate tensile capacity. The transfer lengths measured in these tests were 16 to 38 times the bar diameter, depending on the type of coating on the bars. The study showed that the transfer length is affected by the finish on the prestressing strands.

The *Transfer Prism* is a test used to determine bond characteristics of reinforcements. This test can be used to measure the transfer length only, and its utility to determine the flexural bond length is questionable (Domenico, 1995). In a typical transfer prism, specimens are made by prestressing the tendons and casting concrete prisms of considerably small cross-sectional area, usually long with a square cross section.

The End Slip Method, also referred to as the "draw-in method", is another technique commonly used to evaluate the transfer length of prestressing strands (Logan, 1997). This method is based on relating the amount of slippage measured at the end of the strand upon the release of the prestressing force. First, the strand draw-in Δ_d is calculated as follows:

$$\Delta_d = \delta_s - \delta_c \tag{2.5}$$

where

 δ_s = the change in the strand's length in the stress transfer zone due to prestress

release

 $\delta_c =$ the elastic shortening of the concrete in the stress transfer zone due to prestress release

By integrating the strains of the strand and the concrete along the transfer length, δ_s and δ_c can be calculated as follows:

$$\Delta_d = \int_{L_t} (\Delta \varepsilon_s - \Delta \varepsilon_c) dx \tag{2.6}$$

In Equation 2.6, $\Delta \varepsilon_s$ is the change in the strand strain due to prestress release, and $\Delta \varepsilon_c$ is the change in the concrete strain due to prestress release. If the change in the strand and concrete strain is linear, Equation 2.6 can be expressed in the following, simpler form:

$$\Delta_d = \frac{f_{si}}{\alpha E_{ps}} L_t \tag{2.7}$$

In Equation 2.7, f_{si} is the initial stress in the strand, E_{ps} is the Elastic Modulus of the strand, α is the stress distribution constant, and L_t is the transfer length. Balazs (1993) reported a value of 2 for parameter α in the case of constant stress distribution and a value of 3 in the case of linear stress distribution. Typically, the stress distribution is assumed to be constant. Thus, the transfer length as given by Andrawes et al. (2009) can be calculated as follows:

$$L_t = \frac{2E_{ps}\Delta_d}{f_{si}} \tag{2.8}$$

Domenico (1995) performed research on transfer length and bond characteristics of CFCC strands by testing T-shaped concrete beams in flexure. The variables used were the diameter of the CFCC tendons, concrete cover and strength, and prestressing level. Domenico found that the measured transfer length was proportional to the diameter of the CFCC strands and the prestressing level applied. The transfer length of the CFCC strand was found to be in the range of 140 to 400 mm (5.5 to 15.7 in.), which is much lower than the transfer length determined by using the ACI and AASHTO equations. The author also proposed an equation for transfer length which is given by Equation 2.9:

$$L_t = \frac{f_{pe}A_p}{80\sqrt{f'_{ci}}} \tag{2.9}$$

Grace (2003) designed and used CFRP as the primary reinforcing material in Bridge Street Bridge, the first bridge in the USA to use CFRP. The span that uses the CFRP material as reinforcement spans the Rouge River in Southfield, Michigan. This span was constructed as shown in Figure 2.8, with one side using conventional girders, and the other side using special carbon fiber reinforced beams to provide a side–by–side comparison.

Figure 2.8: Bridge Street Bridge plan view showing conventional span A next to CFRP span B (Grace 2003)

The CFRP-reinforced bridge section consists of four (4) modified double-T girders, designed by Lawrence Technological University (LTU) and Hubbell, Roth and Clark, Inc. (HRC). The study involved long-term monitoring to evaluate the performance of the CFRP reinforcement. Monitoring devices were installed during construction of the span. The cross section of the double-T beam is shown in Figure 2.9.

Instead of steel, each web was reinforced with the following: ten (10) rows of three (3) 10-mm bonded pretensioned CFRP tendons; six (6) rows of two (2) 12.5-mm non-prestressed CFCC strands; and one (1) row of three (3) 12.5-mm non-prestressed strands in each web. The external longitudinal and transverse unbonded CFCC strands provide post-tensioning. The longitudinal 40-mm CFCC strands are externally draped, and 60% of the final post-tensioning force was applied to the longitudinal strands before transporting the beam. Flexure testing was done on the beam before the bridge span was constructed. The researchers observed that all 60 pre-

Figure 2.9: Carbon fiber reinforced double-T beam cross section (Grace, 2003)

tensioning strands failed, while the post-tensioning strands did not. At failure, the post-tensioned strands were within 60% of their tensile capacity, and the ultimate load was 5.3 times the service load. The span was used for long-term monitoring of pretension load, concrete strain in the cross section, girder camber and deflection, external strand integrity, and strain of longitudinal external strands.

Grace (2007) presented the data obtained from monitoring the Bridge Street Bridge span with CFRP reinforcement for a period of five (5) years (April 2001-July 2006), where it was concluded that the bridge spans were performing as expected. To monitor the temperature distribution in the beams, thermistors were used in the embedded vibrating wire strain gages. In addition to the data from the monitoring devices, manually–collected data was also obtained.

Significant fluctuations in the measured deflections have been observed, including erratic behavior by some of the sensors. The average mid-span deflections for Beams C and G, after allowing for the flow of traffic, were observed to be about 23 and 14 mm (0.98 and 0.55 in.), respectively. The researchers found that that the temperature has no significant effect on the deflection of the beams. Furthermore, the study concluded that no discernible deviations had occurred beyond the variations due to seasonal temperature changes in the concrete strain and forces in the post-tensioned strands over the five-year monitoring period. The successful implementation and the performance of the CFCC in the Bridge Street Bridge show that CFCC is comparable to steel strands and holds a promising future as reinforcement in a bridge superstructure. However, the performance of CFCC in a bridge substructure has yet to be assessed.

Three (3) single decked bulb-T beams were constructed and tested to failure by **Grace et al. (2012)**. One beam, used as a control specimen, was prestressed and reinforced with steel strands. The second and third beams were prestressed and reinforced with CFCC and CFRP, respectively. The performance of the beams reinforced with CFCC and CFRP was found to be comparable with the performance of the control specimen. The prestressing force in the reinforcements was to a level of approximately 43, 37, and 57% of the ultimate strength of steel, CFCC, and CFRP, respectively. The stress level attributed to the CFCC and the CFRP strands was less than the maximum allowed by American Concrete Institute (ACI) 440.4R, which is 65%. The beams were cast one (1) day after the prestressing was complete. A special mechanical device, explained in Section 3.3, was used to facilitate the stressing of the CFCC strands without damaging the ends of the strand. A hydraulic pump was used to tension the strands (Figure 2.10).

The anchorage or coupling system provided with the CFCC strands was tested for creep under joint research between Lawrence Technological University (LTU) and Tokyo Rope. The release took place 14 days after concrete casting, and the release of the prestressing forces in the CFCC beam was performed by further pulling the strand above the prestressing force and then untying the mechanical device. The CFCC beam was designed to fail in compression by concrete crushing. The load was applied with a hydraulic actuator (Figure 2.11) and a two-point loading frame.

The performance of the beam was monitored through recording the deflection at the mid span, strain readings in concrete and reinforcement, crack propagation, crack width, and crack pattern. The performance of the CFCC prestressed beams was found to be comparable to that of steel, as shown in Figure 2.12. Grace et al. (2012) concluded that the flexural load carrying capacity and the corresponding deflection of the CFCC beam were 107% and 94% of those of the steel beam, respectively.

Although the research suggests that the performance of the CFCC strands was comparable to steel strands, the prestressing level was below the recommended ACI prestress level (65% of Guaranteed Ultimate Tensile Strength (GUTS)). In the new study presented herein, the CFCC was prestressed to 65% of GUTS.

2.6 Other CFCC Coupling Method

Rohleder et al. (2008) introduced the use of CFCC strands as cables as an emergency replacement for the Waldo–Hancock Bridge. The new bridge used an innovative

(a) Applying pretension to longitudinal strands

(b) Steel Couplers

Figure 2.10: Pretensioning using steel couplers by Grace et al. (2012)

cradle system to carry the stays from the bridge deck through the pylon and back to the bridge deck. CFRP strands were installed for assessing performance in a service condition and for evaluation of possible use on future bridges. As CFRP strands are low in shear strength and subject to brittle fracture when stressed with biting wedges, in this project the carbon strands were bonded in a threaded socket using

Figure 2.11: Load setup for decked bulb-T beams (Grace et al., 2012)

Figure 2.12: Behavior of CFCC in comparison with steel strands. Load-Deflection curves for midspan shown. (Grace et al., 2012)

highly expansive grout (Figure 2.13). The annular spacing in between the socket wall and the strand was filled with a cementitious-based Highly Expansive Material (HEM), which exhibits a high degree of expansion during curing. The expansion of the material produces a confining pressure of approximately 11 ksi (75.85 MPa), locking the strand end and socket together.

Grace et al. (2003) showed that this confining pressure from the HEM is valuable for avoiding creep concerns as might be found if an epoxy agent had been used to anchor the strand in the socket. For the research presented herein, the method used by Grace et al. (2012) was followed to anchor the CFCC strands (Figure 2.10b), as it is also the anchoring method recommended by Tokyo Rope.

(a) Anchor sleeve with nut and strand

(b) Anchor sleeve with HEM

Figure 2.13: HEM coupling method (Rohleder et al., 2008)

2.7 Flexure Test

A flexure test can be used to determine the development length in prestressed concrete members. The test is an iterative process wherein it is often required to evaluate the position of the applied load. The distance between the applied load and the end of the beam can be varied to determine the development length. If the beam fails due to failure of the bond between the strand and the concrete, then this distance is increased, and the test is repeated. Otherwise, if the beam fails in flexure, this distance is decreased. This process is repeated until bond failure and flexure failure occur simultaneously. When this scenario occurs, this distance is considered to be the development length.

Figure 2.14 shows a general setup of a three-point bending test used by Andrawes et al. (2009). If the beam fails in flexure, the load is moved to the left (direction i), and if the beam fails due to bond failure, the load is moved to the right (direction ii).

Abalo et al. (2010) performed testing at the FDOT Marcus H. Ansley Structures Research Center to evaluate the use of CFRP mesh in place of spiral ties or conventional reinforcement spirals for a 24–in. square prestressed concrete pile. A control pile was cast along with the test pile for comparison. Figure 2.15 shows the cross sections of the control and CFRP piles. The control pile was tested earlier to compare the actual capacity to the theoretical capacity of the CFRP pile. The control pile was also a 24–in. square prestressed concrete pile; however, it had 16 0.6–in. diameter low-relaxation strands in a square pattern with W3.4 spiral ties. Both piles were 40–ft long. Strain gages were used to measure concrete strain on the top fiber towards the center of the pile, and ten (10) displacement gages were placed along the length of the pile. The control and CFRP pile test setups were similar except for the number of strain gages used.

A single point load was applied to a spreader beam that consisted of two (2) steel I-beams whose reactions provided the two (2) point loads applied to the pile. The

Figure 2.14: Flexure test used to evaluate development length (Andrawes et al., 2009)

Figure 2.15: Pile sections (Abalo et al., 2010)

load was applied until failure, and the CFRP pile experienced a compressive failure at the top. The ratio of actual-to-theoretical moment capacity for the CFRP pile was 1.27, compared to 1.21 for the control pile.

Based on the research, a conclusion can be made that the performance of the pile using CFRP meshing was higher than that of the control pile. A similar test setup was used in the study presented herein to assess the flexural behavior of CFCC–prestressed piles.

To summarize, there has been a lot of research on the performance of CFRP strands

in beams. The purpose of the research presented herein was to investigate the performance of CFCC strands in 24–in. square piles, so as to evaluate the feasibility of replacing the steel in conventional piles used in Florida Department of Transportation bridge construction projects.

CHAPTER 3

MATERIALS AND INSTRUMENTATION

3.1 Introduction

This research involved the precasting and testing of five (5) CFCC-prestressed concrete piles having a cross section of 24 in. x 24 in., with three (3) piles being 40-ft long and two (2) piles being 100-ft long. The piles were precast at Gate Precast Company (GATE) in Jacksonville, Florida. The various tests were performed at GATE, FDOT Marcus H. Ansley Structures Research Center, and at a bridge construction site in Volusia County, Florida. This chapter describes the characteristics and properties of the materials used to construct the piles and the instrumentation used to test them.

3.2 Prestressing Strands

CFCC, manufactured by Tokyo Rope, was used as the prestressing material in the piles. CFCC is a composite of fiber and a fiber bond; the fiber used to provide bond is usually epoxy. Care must be taken to protect the strands from damage, deformation, and sudden shocks caused by heavy or hard objects. Strand diameters of 12.5 mm (0.5 in.) and 15.2 mm (0.6 in.) were used for longitudinal prestressing in the initial and final precasting attempts, respectively, and a CFCC wire with diameter 5.0 mm (0.2 in.) was used for transverse spiral reinforcement. As reported by the manufacturer, the strands and wire have effective cross-sectional areas of 76.0 mm² (0.118 in²), 115.6 mm² (0.179 in²), and 15.2 mm² (0.0236 in²), respectively. The GUTS is 184 kN (41.4 k) for the 12.5-mm diameter strands, 270 kN (60.7 k) for the 15.2-mm strands, and 38 kN (8.54 k) for the 5.0-mm wire. The strands' modulus of elasticity 155 GPa (22,480 ksi), and the ultimate tensile strain is 1.6%; the modulus of elasticity for the wire is 167 GPa (24,221 ksi). The stress-strain relationship of CFCC strand is linear

up to failure. Other characteristics of CFCC are mentioned in Section 2.3 and in Appendix A.

For the final precasting attempt, conventional 0.6–in. diameter steel strands were coupled with the CFCC to facilitate stressing. They were seven–wire, 270–ksi (1.86–GPa), low–relaxation strands conforming to ASTM A416 specifications. Their nominal cross–sectional area is 0.217 in² (140 mm²), and the modulus of elasticity is 28,500 ksi (196 GPa).

3.3 Coupling Device Anchorage System

Figure 3.1 shows the conventional method of stressing strands in a casting bed. The steel strand is held by chucks on both ends and is tensioned using a jack. The chuck most commonly used at the non–stressing end of the bed is a Bayonet grip that comprises a barrel and a wedge. On the stressing end of the bed, the most commonly used grip is an open grip (Figure 3.2), where the wedges are held together by an O-ring.

Figure 3.1: A typical stressing bed schematic (Access Science website)

Because CFCC is brittle and susceptible to abrasion, the conventional method of anchoring it for prestressing operations was not allowed. Instead, an anchoring device was used to couple the CFCC with the conventional steel strands. The steel strands were then gripped using the bayonet grips and the open grips at the precasting bed non-stressing end and stressing end, respectively.

The anchoring device was a stainless steel coupler (Figure 3.3) that is produced by Tokyo Rope. It consists of a stainless steel sleeve for the CFCC and an attached joint coupler in which to anchor the steel strand. Before Tokyo Rope manufactured this coupler, Mahmoud et al. (1999) wrapped synthetic yarns around each strand because the CFCC is vulnerable to objects gripping on it directly. Recently, Tokyo Rope introduced a steel mesh sheet (Figure 3.4) and a steel braid grip that provide friction between the CFCC and the stainless steel sleeve and also to avoid direct

Figure 3.2: Open grip (Source: CCL pretensioning systems website)

contact of the wedges with the CFCC, thus avoiding mechanical abrasion. The mesh sheet comprises interlocked layers of stainless steel sheets and Polinet sheets. This provides adequate buffer to the CFCC strands and resists the bite from the wedges during seating, thus protecting the strand from getting damaged. The braided grip provides a second layer of buffering while creating frictional forces against the wedges. To anchor the conventional steel strand to the coupler, a chuck is used.

Figure 3.3: Tokyo Rope coupling device (Tokyo Rope CFCC handling manual)

Figure 3.4: Construction of buffer material (Tokyo Rope)

Tokyo Rope currently produces couplers for 0.6–in. diameter strands. This newly– developed anchoring device was tested for creep under joint research between Lawrence Technological University (LTU) and Tokyo Rope. The installation procedure for the anchoring device is explained in Chapter 4, and Tokyo Rope's installation instructions are included in Appendix A.

3.4 Concrete

Self-consolidating concrete (SCC) was used in this research program. SCC is a highlyworkable concrete that flows under its own weight through densely-reinforced or complex structural elements. The benefits of using SCC include:

- 1. Improved constructability
- 2. A smooth finished surface
- 3. Eliminated need for mechanical vibration
- 4. It easily fills complex-shaped formwork.

For a concrete mix to be considered as self–consolidating concrete, the Precast/Prestressed Concrete Institute (PCI) suggests a minimum of three physical properties:

- 1. Flowability
- 2. Passing ability
- 3. Resistance to segregation

To achieve the high flowability and stability characteristics of SCC, typical mixes have a higher paste volume, less or smaller coarse aggregate, and higher sand-tocoarse aggregate ratios than conventional mixtures. Figure 3.5 compares the volume percentage of the constituents used in SCC and those used in traditional concrete. Previous studies have demonstrated that hardened SCC shares similar mechanical properties with conventional concrete in terms of strength and modulus of elasticity (Persson, 2001). However, SCC has greater concrete shrinkage because of its higher paste or fines content.

Figure 3.5: Typical volume percentage of constituents in SCC and traditional concrete (Andrawes et al., 2009)

Andrawes et al. (2009) researched the bond of SCC with steel strand, and he concluded that SCC does not affect the strand's transfer or development length and is comparable to conventional concrete and its strength.

GATE mixed the SCC for the piles, and they measured the 28-day cylinder strength to be 8640 psi (59.6 MPa). The aggregates in the mix design were 67 Rock, Sand, STI Flyash, and Glenium 7700. The water-to-cement ratio was 0.34, and the density was 142.3 lb/ft³. The concrete mix properties are in Appendix B.

3.5 Instrumentation

3.5.1 Strain Gages

This research involved concrete strain measurement during transfer and during flexural and development length tests. For this purpose, strain gage model KC–60–120– A1–11 (L1M2R), manufactured by KYOWA Electronic Instruments Co., Ltd., was used (see Figure 3.6),

where

60 = length of the strain gage (mm) $120 = \text{resistance of the gage } (\Omega)$ L1M2R = 2 lead wires of length 1 m each

Figure 3.6: Strain gage schematic (Kyowa Strain Gage Manual)

The two (2) lead wires come connected to the strain gage from the supplier, for ease of connecting the gages to the data acquisition system. Otherwise, the lead wires have to be soldered to the gage, which is a time–consuming process. This type of strain gage can be easily adhered to concrete by using glue, and some initial preparation is required before application, which is explained in Section 5.1. Chapter 5 provides details on the strain gage layout for each stage of testing and type of test performed.

3.5.2 Deflection Gages

Non-contact displacement gages, provided by the FDOT Structures Research Center, were used for the flexural and development length tests on the 40-ft piles. The displacement gages are easy to install and can project the laser in areas where contact displacement gages cannot reach. Chapter 5 provides details on the displacement gage layout for each type of test performed.

3.5.3 Embedded Data Collectors (EDC)

To monitor the two (2) 100-ft-long piles during driving operations, Embedded Data Collectors (EDC), shown in Figure 3.7, were pre-installed in the piles before they were cast at GATE. The EDC system was provided and installed by Applied Foundation Testing, Inc. (AFT). AFT also provided personnel on site during pile driving and interpreted the results. The installation procedure is explained in Chapter 4.

Embedded Data Collectors are strain transducers and accelerometers that are embedded in a concrete member. The EDC system was developed as a result of the FDOT project, "Estimating Driven Pile Capacities during Construction" (Herrera et al., 2009). Before EDC was developed, pile monitoring during driving was done

Figure 3.7: Typical EDC set of instruments (Source: FDOT)

with a Pile Driving Analyzer[®] (PDA). Because the PDA requires the user to assume a constant damping factor for static resistance estimates in the field, and because signal matching analyses (CAPWAP) do not produce unique solutions, FDOT sought an alternative method to calculate static resistance from dynamic load test results. Hence, the FDOT studies were conducted on the use of EDC as a standard method to monitor piles during driving. The EDC system estimates soil damping for every blow during driving. The ability to monitor the pile specimen over a long period of time (several months or years) is another advantage of EDC. In the research by Herrera et al. (2009), EDC performance was compared to PDA and CAPWAP on a database compiled by FDOT. Herrera observed that the EDC provides results that are on an average within 15 percent of PDA and CAPWAP estimated static resistance.

3.5.4 Pile Driving Analyzer[®] (PDA)

The Pile Driving Analyzer[®] (PDA) system was used to monitor the two (2) 100– ft–long piles during driving operations. The PDA uses accelerometers and strain transducers to continuously measure pile-top forces and velocities. It is used to monitor stresses in the pile during driving; accordingly, adjustments can be made to the cushion and hammer impact force to prevent damage to the pile. Measurements recorded during driving are also used to calculate the pile driving resistance, as well as the pile's static bearing capacity. FDOT provided and installed the PDA system and interpreted the results. GRL Engineers, Inc. (GRL) was also on site to provide an analysis and expertise.

CHAPTER 4

TEST SPECIMEN PRODUCTION

4.1 Introduction

This research involved the precasting and testing of five (5) CFCC-prestressed concrete piles. This chapter describes the casting setup and the different methods used to stress the strands, and comparisons to conventional methods are made.

Tokyo Rope's coupler installation procedure, as well as stressing procedures and coupler arrangements similar to those used by Grace et al. (2012), was used for this research. This was the first instance that couplers were used by FDOT, and hence an initial session was conducted at the Marcus H. Ansley Structures Research Center to demonstrate the installation procedure for the coupling device. This session also illustrated to the precaster, Gate Precast Company, the techniques for installing and tensioning a CFCC strand.

Later, on July 22–26, 2013, the research team from the FAMU-FSU College of Engineering joined with Tokyo Rope at GATE's precasting yard in Jacksonville, Florida, to precast the five (5) pile specimens. There, Tokyo Rope installed the 40 couplers — 20 at each end of the precasting bed. GATE stressed the set of 20 CFCC strands, tied CFCC spiral reinforcement, and cast the concrete. FAMU-FSU provided assistance whenever needed and oversaw the efforts for accordance with the design and research goals.

This chapter provides details of these efforts, and Appendix H includes several photos of the coupler installation, CFCC strand stressing, CFCC spiral installation, and pile casting.

4.2 Coupling at the FDOT Lab

For the initial demonstration session, 4–ft lengths of 0.5–in. diameter CFCC strands were stressed using couplers supplied by the CFCC manufacturer, Tokyo Rope. The coupler connects the CFCC strand to a conventional steel strand. A small mock-up of the precasting bed was built by FDOT to simulate the procedures that would be used during the actual pretensioning of the pile specimens at GATE's precasting yard (Figure 4.1).

Figure 4.1: Setup for coupling demonstration

Tokyo Rope demonstrated how to install the coupling devices. After they were installed, markings were made at the junctions of the coupler and the CFCC and steel strands, to measure any strand slip that would occur during stressing and to verify that it would slip as predicted by Tokyo Rope. Load was applied using a monostrand jack until the pressure was 3400 psi, which equates to 27,030 lb in the strand. The stress was applied gradually to minimize slippage. At 3400 psi, it was observed that the wedges had seated in the coupler sleeve. When the strand was released, the jack pressure was recorded as 2300 psi, equating to 16,606 lb in the strand. The strand was removed, and the test was repeated on a different strand with similar results.

4.3 Pile Specimen Configuration

The prestressing force was designed so that the pile would have the minimum desired compression of 1 ksi on its cross section to overcome tensile stresses during driving.

The prestressing strand pattern was based on FDOT's standard details for a 24– in. square pile with 20 0.6–in. diameter (15.2–mm) strands (Figure 4.2a). The 20– strand option was chosen because of GATE's casting bed strand template. The spirals were 5.0–mm diameter (0.2–in.) CFCC, with approximate dimensions shown in Figure 4.2b. The number of turns and pitches for the CFCC spirals was based on FDOT standards for conventional steel spirals (Figure 4.3), which is designed to provide confinement to the concrete core and to avoid premature failure at the ends due to prestress release and impact load during driving. More details of the piles are provided in Appendix C.

Figure 4.2: Section view of the pile specimens. (See Appendices A and C for manufactured dimensions.)

Figure 4.3: FDOT standard pile details

4.4 Prestressing Losses

PCI Design Handbook (PCI, 2010) edition, Chapter 5, explains the prestressing loss calculations for a prestressed concrete member. This enables the designer to estimate the prestressing losses rather than using a lump–sum value. The equations provide

realistic values for normal design conditions. These equations were applied to calculate the prestress losses for the five (5) pile specimens and resulted in a total prestress loss of 8.8% for each of the 16 strands. The four (4) corner strands that were initially stressed to only 5 k had much greater losses (61.6%) because the elastic shortening, creep, and shrinkage losses due to all the strands being stressed were disproportional to the small initial stress (See Appendix D). The calculations for the various losses are described below.

The total losses are due to elastic shortening (ES), creep of concrete (CR), shrinkage of concrete (SH) and relaxation of the strands (RE):

$$TL = ES + CR + SH + RE \tag{4.1}$$

Losses due to elastic shortening, in psi, are calculated as:

$$ES = \frac{K_{es}E_{ps}f_{cir}}{E_{ci}} \tag{4.2}$$

where

 $K_{es} = 1.0$ for pretensioned components $E_{ps} =$ modulus of elasticity of prestressing strands (psi) $E_{ci} =$ modulus of elasticity of concrete at the time prestress is applied (psi) $f_{cir} =$ net compressive stress in concrete at center of gravity of prestressing force immediately after the prestress has been applied to the concrete (psi)

where

$$f_{cir} = K_{cir} \left(\frac{P_i}{A_g} + \frac{P_i e^2}{I_g}\right) - \frac{M_g e}{I_g}$$

$$\tag{4.3}$$

where

 $K_{cir} = 0.9$ for pretensioned components

 P_i = initial prestress force (lb)

e = eccentricity of center of gravity of tendons with respect to center of gravity of concrete at the cross section considered (in.)

 A_q = area of gross concrete section at the cross section considered (in²)

 I_g = moment of inertia of gross concrete section at the cross section considered (in⁴) M_g = bending moment due to dead weight of prestressed component and any other permanent loads in place at the time of prestressing (lb-in.)

Losses due to creep of concrete, in psi, are calculated as:

$$CR = K_{cr} \left(\frac{E_{ps}}{E_c} (f_{cir} - f_{cds})\right) \tag{4.4}$$

where

 $K_{cr} = 2.0$ normal-weight concrete

 f_{cds} = stress in concrete at center of gravity of prestressing force due to all superimposed, permanent dead loads that are applied to the member after it has been prestressed (psi)

 $E_c =$ modulus of elasticity of concrete at 28 days (psi)

where

$$f_{cds} = \frac{M_{sd}(e)}{I_g} \tag{4.5}$$

where

 M_{sd} = moment due to all superimposed, permanent dead load and sustained load applied after prestressing (lb-in.)

Losses due to shrinkage of concrete, in psi, are calculated as:

$$SH = (8.2 * 10^{-6}) K_{sh} E_{ps} (1 - \frac{0.06V}{S}) (100 - RH)$$
(4.6)

where

 $K_{sh} = 1.0$ for pretensioned components $\frac{V}{S} =$ volume-to-surface ratio RH = average ambient relative humidity

Losses due to relaxation of strands, in psi, are calculated as:

$$RE = [K_{re} - J(SH + CR + ES)]C$$

$$(4.7)$$

where values of K_{re} and J are taken from Table 5.7.1 in PCI (2010), and values of coefficient C are taken from Table 5.7.2.

4.5 Pile Casting Bed Setup

4.5.1 Stressing Forces

According to the ACI specifications for CFRP strands, CFCC should be stressed to no more than 65% of GUTS. For the 15.2–mm diameter strands, GUTS is equal to 270 kN (60.7 kips). However, GATE's casting bed was designed to hold a maximum compressive force of 684 kips, which is not enough strength if all 20 strands were stressed to 65% of GUTS. To keep the total compressive force under the capacity of the casting bed, one of the options considered was to stress all the strands to less than 65%. The option chosen, however, was to stress the four (4) corner strands to 8.2% of GUTS and to stress the remaining 16 strands to 65% of GUTS. This would permit the CFCC's performance to be assessed at ACI's recommended maximum stress level. Hence, the jacking force for each of the 16 strands was 39.45 kips (65% of GUTS), and the jacking force for each of the four (4) corner strands was 5 kips (8.2% of GUTS) — for a total compressive force of 651.2 kips.

4.5.2 Wooden Headers

CFCC strands are not as strong in shear as steel strands, approximately half as much, and are susceptible to damage from hard-edged objects in abrasion. To avoid damaging the CFCCs, GATE's conventional steel headers were replaced with wooden (0.5–in.–thick plywood) headers that were built at the casting yard (Figure 4.4). Twenty (20) holes of 0.7–in. diameter were drilled in the headers to accommodate the CFCC strands. The wooden headers were placed at every pile–end location. Additional headers were placed at each end (at the stressing and non–stressing ends) of the bed, to be used for casting 5–ft–long concrete blocks that would secure the strands as a measure of safety after stressing.

(a) Conventional Steel Header

(b) Wooden Header

Figure 4.4: Steel header replaced with wooden header

4.5.3 Prestressing Bed Layout

The prestressing bed was a self-stressing form, with a total length of 440 feet. A schematic is shown in Figure 4.5. The distance between the concrete block at the stressing end and Pile '1' was 1 ft, and similarly the distance between the concrete block at the non-stressing end and Pile '5' was 1 ft. The end-to-end distance between adjacent piles was 1 ft, to provide enough room to cut the CFCCs. Because of the coupling devices that were used, additional length of CFCC strands was considered, which is explained in the next section.

Figure 4.5: Stressing bed schematic at Gate Precast Company

4.6 Strand Installation

The 5-mm diameter CFCC spirals were delivered in five (5) bundles, one (1) for each pile. The bundles were placed at each pile location, to be put in the final position once the prestressing operations were complete. The CFCC strands were delivered to GATE in spools (Figure 4.6). They were pulled from the spool and along the length of the casting bed, while being fed through the headers. GATE used typical procedures to pull the strands, with the exception of their pulling one strand at a time by hand instead of machine-pulling several at a time.

Each strand was cut to a length of 360 ft before another one was pulled from the spool. This length accounted for the prestressing bed setup, so the strand would be long enough for the total pile length, the concrete blocks, the headers, and the additional length needed to avoid coupler interaction during stressing (as discussed in the next section).

Figure 4.6: Assembly to lay strands

4.7 Coupler Staggering

Before the couplers were installed, it was necessary to consider the CFCC strand elongation and the seating losses in the coupler as explained in Section 4.2. The couplers were installed in a staggered pattern, to avoid any coupler interaction that could result from the strands elongating during tensioning. The couplers were staggered at 3–ft increments. The strands were stressed starting with the coupler closest to the stressing jack and extending 8 ft from the end of the pile, proceeding to the couplers extending 5 ft, and finally to the couplers extending 2 ft. Figure 4.7 shows the stagger pattern at the stressing and non–stressing ends of the prestressing bed, and Figure 4.8 shows a plan view at each end.

Figure 4.7: CFCC strand stagger pattern, viewed from both ends

Figure 4.8: Coupler stagger pattern, plan view of both ends

The basic elongation of the CFCC strands due to the initial prestressing force was calculated using Equation 4.8.

$$\Delta = \frac{PL}{AE} \tag{4.8}$$

where

P = prestressing force applied (kips) L = length of the CFCC strand (ft) A = cross-sectional area of the CFCC strand (in²) E =modulus of elasticity of the strand (ksi)

In addition to the basic elongation, an abutment rotation of 0.25 in., anchor sets of 0.125 in. and 0.375 in. for the non-stressing end and stressing end, respectively, along with seating losses of the steel strand's and CFCC's wedges in the coupler, were taken into account. The seating in each coupler was assumed to be 0.125 in. for the steel strand and 2.165 in. for the CFCC strand per the manufacturer. The elongation of the steel strands were also considered.

4.8 Coupler Installation Procedures

The couplers were installed by Tokyo Rope. Tokyo Rope's full instructions are included in Appendix A and are summarized below.

4.8.1 Setting the Anchoring Device

1. Wrapping the Buffer Material

The buffer material explained in Chapter 3 was wrapped over the end of the CFCC strand to be anchored. The wrapping was spiraled over the strand, carefully following the CFCC's direction of twist, so that during tensioning, the strand and the buffer material would act homogeneously (see Figure 4.9).

Figure 4.9: Wrapping the buffer material (Source: Tokyo Rope)

According to Tokyo Rope specifications, the buffer material should extend up to 160 mm from the end of the CFCC to be anchored so as to provide enough area for the wedges to seat.

2. Spray Molybdenum

The sleeve was lubricated with molybdenum spray (Figure 4.10) to reduce the friction between the wedges and the sleeve during wedge seating. Although

Figure 4.10: Spraying molybdenum on the sleeves (Source: Tokyo Rope)

the amount of molybdenum to be sprayed on the sleeve was specified by Tokyo Rope, the sleeves were sprayed until the inside surface was fully covered. The molybdenum spray is an air-drying, solid film lubricant containing molybdenum disulfide and a binder, so it adheres to many surfaces and does not easily rub off. It forms a thin, dry but "slippery" film of solid lubricants and performs under extremely heavy loads up to 10,000 psi. The molybdenum spray for this research was supplied by Tokyo Rope.

3. Insert the Sleeve and Install the Braided Grip

After spraying the sleeve with the molybdenum lubricant and letting it dry (usually less than a minute), the CFCC strand (which is wrapped with the mesh sheet) was inserted into the sleeve. The mesh sheet buffer material was then covered with the braided grip (Figure 4.11).

Figure 4.11: Installing sleeve and the braided grip

The braided grip was first compressed manually, such that the grip's diameter increased for the ease of sliding it over the mesh sheet. Once it enveloped the mesh sheet, the braided grip was drawn tightly towards the end of CFCC to eliminate the excess diameter if any, such that the braided grip wrapped the mesh sheet without any wrinkles. An electrical tape was fixed to both the ends of the braided grip and mesh sheet to protect the installer from any sharp edges. 4. Check the Installation

It was ensured that the wrapping of the buffer material followed the specifications provided by Tokyo Rope:

- Tape–to–tape length needs to be over 155 mm because the length of the wedge is 155 mm
- Check if the braided grip has no wrinkles and is tightly wrapped
- The spiral wrapping of the mesh sheet should not have any gap between the spirals

4.8.2 Setting Wedges and Sleeve Toward CFCC

Figure 4.12 shows the steps to set the wedges and sleeve for the CFCC. Once the

Figure 4.12: Wedge setup

checks for the buffer material were verified, the molybdenum spray was applied on the outer surface of the wedges until they were completely covered with a thin film of the lubricant, to provide ease of wedge seating. The wedges were placed on the CFCC strand wrapped with the buffering material, such that 60 mm of the strand end was extending beyond the larger diameter of the wedge. The wedges were provided with an O-ring so that they remained in place.

The wedge position was checked for the following:

- 1. The wedge position should not overlap with the electrical tape that is wrapped around the ends of the buffer material.
- 2. The wedges should not have any gaps between them.

The wedges were inserted into the sleeve:

A pneumatic jack provided by Tokyo Rope was used to provide a consistent penetration of all four (4) parts of the wedge into the sleeve, as shown in Figure 4.13. A 55-mm mark was made on the wedge from the larger end of the wedge, and that is the point to which the wedge was penetrated in to the sleeve. If the wedges are inconsistently installed in the sleeve, there are chances of improper seating of the wedges, thus providing an uneven grip on the CFCC strand. After the mark was made, the pneumatic jack (Figure 4.13) was used to push the wedges into the sleeve, with a pressure of about 20 MPa (3 ksi).

Figure 4.13: Wedge installation

4.8.3 Finishing the Coupler Installation

The coupler installation was finished in the two steps described below.

1. Attaching the wedges and the coupler to the steel strand:

A standard open grip, shown in Figure 3.2, was used to wedge the steel strand in the coupler. The coupler is provided with a hole which allows the steel strand to be inserted in one end (Figure 4.14). After the steel strand was inserted into the coupler, the open grip was installed on it and was pulled back inside the coupler, so that anchoring of the steel strand was complete.

Figure 4.14: Steel strand installation

2. Joining the CFCC to the steel strand:

The CFCC strand end with installed wedges and buffer materials was coupled to the steel strand end by twisting together the threaded ends of the sleeve and the coupler (Figure 4.14). The coupler was turned until it was taut and then drawn out by a thread, so that there would be no damage to the coupler while tensioning. Figure 4.15 is a photo of the completed installation of a coupler. Note that there should be no interaction between the CFCC and the steel strand within the coupler.

Figure 4.15: CFCC coupled with steel strand

After the coupler installation was complete, the slack in the CFCC strands that occurred while laying the strands was removed by pulling the strands taut at the non-stressing end. The steel strands at the non-stressing end were anchored by using the standard bayonet grips. Figure 4.16 shows the coupler arrangement after the couplers were installed. Location 'a' represents the couplers extending 2 ft from the end of the pile, location 'b' represents the couplers extending 5 ft from the end of the pile, and location 'c' represents the couplers extending 8 ft from the end of the pile.

Figure 4.16: Coupler view after stagger

4.9 Stressing the Strands

The stressing pattern was different than for conventional steel strand stressing. All the strands were stressed to a force of 5 k during the initial prestressing, and the corner strands were not stressed more thereafter. The remaining 16 strands were stressed in the sequence shown in Figure 4.17. GATE measured the stressing force during all pretensioning operations and recorded it after each strand was fully stressed.

Figure 4.17: Stressing sequence, at stressing end, looking towards pile

The expected combined elongation of the CFCC strands and steel strands was less than 50 in. The hydraulic jack had a stroke capacity of 72 in. and therefore would not need to be repositioned to complete the stressing. Hence, there was no need to cut any steel strand ends during the stressing operation. Because the CFCC was coupled with the steel strand, Tokyo Rope advised the precaster to stress each strand gradually. The suggested approximate time to stress one strand to a force of 39.45 k was 3 minutes. This would allow the wedges in the coupler to seat without causing any slippage of the strands.

The prestressing force was applied using a hydraulic monostrand jack, and the strands were locked using open grips at the stressing end so that the force would be maintained after jacking. For the initial stressing, all 20 strands were stressed to a force of 5 k, and the corner strands were not stressed more thereafter. After the initial stressing was complete, the CFCC strands were checked to ensure that there was not excess slack, and the integrity of the coupler device was checked. Markings were made on the CFCC strands at the edge of the couplers to denote any slippage. Figure 4.18 illustrates the coupler stagger pattern after the completion of initial stressing.

Figure 4.18: Staggered couplers after initial pretensioning

Figure 4.19 shows the target force for each strand, and Table 4.1 shows the measured force and elongation for each strand. During the stressing process, after each strand tensioning was complete, elongation of strands was recorded by measuring from a premarked spot on the strand to the end of the jack. The measured elongations ranged from $46\frac{3}{4}$ in. to 50 in., which was close to the expected $47\frac{1}{4}$ in. The elongations of strands 2, 3, and 4 were higher than the calculated elongation, likely because of initial excess slack in the strand due to the weight of the coupler.

After the completion of stressing, self–consolidating concrete was used to cast the concrete blocks between the pile ends and casting bed ends. This was a measure of safety to secure the stressed strands. The concrete was mixed at GATE and was supplemented with an accelerating agent, so that the concrete blocks would cure faster.

Figure 4.19: Target forces and strand numbers at stressing end

Strand	Force in	Calculated	Observed			
No.	Strand	Elongation	Elongation			
	lb	in.	in.			
1	5000	NA	NA			
2	39460	$47\frac{1}{4}$	50			
3	39490	$47\frac{1}{4}$	$49\frac{3}{4}$			
4	39460	$47\frac{1}{4}$	48			
5	39430	$47\frac{1}{4}$	$47\frac{1}{2}$			
6	5000	NĂ	NĀ			
7	39460	$47\frac{1}{4}$	$47\frac{3}{4}$			
8	39460	$47\frac{1}{4}$	$46\frac{3}{4}$			
9	39460	$47\frac{1}{4}$	$47\frac{1}{4}$			
10	39440	$47\frac{1}{4}$	$47\frac{1}{2}$			
11	5000	NĂ	NÃ			
12	39450	$47\frac{1}{4}$	$47\frac{1}{4}$			
13	39450	$47\frac{1}{4}$	$46\frac{3}{4}$			
14	39450	$47\frac{1}{4}$	$47\frac{1}{4}$			
15	39470	$47\frac{1}{4}$	$46\frac{3}{4}$			
16	5000	NĂ	NĂ			
17	39460	$47\frac{1}{4}$	48			
18	39440	$47\frac{1}{4}$	$46\frac{3}{4}$			
19	39470	$47\frac{1}{4}$	$47\frac{1}{4}$			
20	39510	$47\frac{1}{4}$	$47\frac{1}{4}$			

 Table 4.1: Force and elongation measurements

4.10 Installation of Spirals and EDC

The CFCC spirals, which were placed near their respective locations in the piles before the stressing operations began, were tied in their final position to the CFCC strands with plastic zip ties (Figure 4.20). The spirals at the locations where Embedded Data Collectors were to be installed were temporarily left untied, to provide enough space to install the EDC, after which the spirals were tied. Lifting hooks were installed in accordance with FDOT standards.

Figure 4.20: Installation of stirrups (Source: ACI)

Embedded Data Collectors were installed in the two (2) 100–ft piles, for the purpose of monitoring the piles during driving. Applied Foundation Testing, Inc. (AFT) provided and installed the Embedded Data Collectors, as follows:

- 1. EDCs were installed at two (2) pile widths (48 in.) from the head of the pile and at one pile width (24 in.) from the tip of the pile.
- 2. An additional EDC was installed at the center of the other two (2) EDCs to monitor the strain in the mid span during driving.
- Cables were run through the piles for enabling the connection between the three (3) sets of EDCs.
- 4. The cables were tied to the strands using zip ties, making sure that the cables would not be subjected to any damage while placing concrete.

The instrument set located in the center was kept clear of the lifting hooks, at 48 in. and 51 in. from the pile head for Pile No. 1 and Pile No. 2, respectively (refer to Figure 4.5 for casting bed layout). The spirals in the vicinity of the EDCs were tied to the CFCC strands after the EDC installation was complete. Figure 4.21 shows the EDC secured to the CFCC strands. The EDC was fixed using a rubber material to prevent the hard edge of the steel frame from interacting with the strands and to minimize any steel and carbon interaction. The entire setup was checked for quality

Figure 4.21: EDC clamped with a rubber material

by GATE and the researchers before the concrete was placed. Once the piles were cast and cured as described in the next section, the battery for the EDC system was disconnected. The battery was reconnected several months later, when the piles were driven at the construction site.

4.11 Concrete Placement

Not typically used for piles, a self-consolidating concrete mix was used to avoid the need to use a mechanical vibrator. This was desired because the CFCC strands are susceptible to abrasion and damage if a conventional mechanical vibrator is used. As per Tokyo Rope's standards, a vibrator with a rubber tip can be used to consolidate the concrete in a member that contains CFCC, or a mechanical vibrator with no rubber wrapping can be used in cases where the spacing between the CFCCs is larger than the diameter of the vibrator head so that there is no interaction between the

vibrator head and the CFCC strands. Instead, self-consolidating concrete was used so that a vibrator would not be needed during placement operations (Figure 4.22). This would avoid altogether the potential of impacting the CFCC with a vibrator.

Figure 4.22: Casting using SCC

Accelerants were added to the concrete for faster curing. To cast all five (5) piles, four (4) truckloads of concrete were placed. The top surface of the concrete was leveled to a smooth finish. Once the casting was complete, a plastic cover was placed over the bed to facilitate a uniform curing temperature, as shown in Figure 4.23. Steam curing was not allowed because the temperature could have affected the couplers. According to Tokyo Rope, slippage of a strand in the coupler occurs at around 140°F.

Seven (7) 4-in. x 8-in. cylinders were made, to test for concrete strength after 24 hours (to determine if the strands could be released) and at the times of the flexure tests and pile driving tests. The next day, the strain gages were installed for the purpose of the transfer length tests described in the next chapter.

4.12 Stress Release

To release the strand force into the piles, the strands were then cut in the sequence shown in Figure 4.24. Figure 4.25 shows the tools used to cut the steel and CFCC strands, respectively.

Figure 4.24: Strand cutting sequence

For a typical pile, the precaster cuts the strands in a routine, customary pattern. However, in this study, the strand cutting sequence was governed by the position of the installed couplers. The cutting sequence was designed such that there would be no coupler interaction during release of prestressing force, as the couplers would tend to pull in towards the pile when the strands were cut (refer to Figure 4.8 for the coupler stagger pattern). In accordance with a typical cutting sequence, the cuts were alternated in a symmetrical pattern about the axes of the cross section, to not cause unnecessary (although temporary) tension on the pile's outer surfaces.

Before the strands were cut, markings were made at 2 in. from the header locations on the CFCC strands to measure any amount of strand slip during stress release. From Figure 4.24a, the corner strands that extended 2 ft from the end of the pile were cut first, and then the strands (marked in black) that extended 5 ft from the end of the

(a) Torching the steel

(b) Cutting the CFCC

Figure 4.25: Different strand cut method

pile were cut, followed by the strands (marked in white) that extended 8 ft.

Conventionally, torches were used to cut the steel strands at both the stressing and non-stressing ends simultaneously (Figure 4.25a). After the 20 strands had been cut at each end, the CFCC strands between the pile headers were cut using a side grinder (Figure 4.25b), because CFCCs are bonded with epoxy and it is recommended to not torch them. The distance in the headers between the pile ends was only about 1 ft, but this distance could be increased so that the operator cutting the strands will have a greater space in which to lower the grinder for cutting the strands at the bottom.

The EDCs monitored concrete strains, during stress release, in the two (2) 100-ft piles. Similarly, electrical strain gages were used to monitor the concrete strains in the three (3) 40-ft piles. The experimental program and instrumentation setup are explained in the next chapter.

CHAPTER 5

EXPERIMENTAL PROGRAM

5.1 Transfer Length Tests

5.1.1 Introduction

As mentioned in Chapter 2, the transfer length is the distance from the end of the prestressing strand to the point where the effective stress in the strand is developed. In a pretensioned member, this stress is transferred from the strand to the surrounding concrete through bond. The length over which the stress is transferred is inversely proportional to the bond strength. For design, it is necessary to predict this length, so that it is known where the effective prestress has been fully transferred to the member's cross section.

This section describes the experimental program designed to measure the CFCC's transfer length in this study. Monitoring the piles was done at Gate Precast Company on July 26, 2013, while the piles were in their casting bed. Concrete strains were continuously monitored at the ends of the piles while the steel strands were being torch cut and while the CFCC strands were being cut with a side grinder. This data shows the gradual transfer of prestress to the surrounding concrete throughout the strand cutting operations.

5.1.2 Test Setup and Instrumentation

The three (3) 40-ft piles were equipped with electrical resistance strain gages on the tops of the piles, so that concrete strains could be measured during stress release. The strain gage application was started after the concrete was allowed to cure for 24 hours. The strain gages had an effective length of 60 mm (2.36 in.) and were installed at the ends of the piles and at mid span.

On all three (3) pile specimens, the strain gage locations were kept similar, as shown in Figure 5.1. One end of the pile was instrumented with eight (8) strain gages along the centerline of the pile, and the other end had 18 strain gages installed approximately along the top corner strands.

Figure 5.1: Strain gage layout on top of pile for transfer length test (Not to scale)

Strain gage application was done as follows:

- 1. The concrete at the strain gage locations was smoothed with a grinder.
- 2. The smooth surface was cleared of dust by spraying it with acetone and wiping it clean.
- 3. Centerline location markings were made on the smoothened surface.
- 4. Strain gages were applied using Zap gel glue.
- 5. The strain gage lead wires were secured by taping them to the concrete with duct tape.

The strain gages on a given pile were connected to a channel which in turn was connected to the data acquisition system located adjacent to the center of the three (3) 40-ft piles. The system was provided and controlled by FDOT. The strain gages were checked for weak bond with the concrete by looking for violent jumps in the strain readings, and gages with irregular readings were replaced. The strain gages were numbered as shown in Figure 5.2, starting from the stressing end of the bed. For example, for strain gage number S103, S represents a strain gage, and 103 represents the first pile and the third strain gage on the pile. Similarly, the gage numbers on the second and third piles started with S201 and S301, respectively. After the installation was complete, the concrete strains were monitored throughout the stress release process. The results are discussed in Chapter 6.

1																	1
	5101	\$103	S105	<u>\$107</u>	\$109	S111	S113	S115	5117								
				0107	5105					-{·-·-·}		-[]		• • • • • • • • • •		· E · = · = · ·	<u></u>)-
		+		+ h						S119	S120	\$121	S122	S123	S124	S125	S126
	\$102	S104	S106	S108	S110	S112	S114	S116	S118	1990							

Figure 5.2: Strain gage numbering for transfer length test (Top view of pile in casting bed)

The two (2) 100-ft piles were instrumented with Embedded Data Collectors, as previously discussed. As shown in Figures 5.3 and 5.4, the data collector steel frames were placed at a distance of two (2) pile widths from the head of the pile and one (1) pile width from the bottom of the pile.

Figure 5.3: Typical EDC layout (FDOT)

Figure 5.4: EDC installation
After the concrete was cast, the strains were recorded through a wireless receiver; this continued throughout the strand cutting operations. EDC installation and data monitoring was done by Applied Foundation Testing, Inc. The results from the EDC monitoring are discussed in Chapter 6. The EDCs were also used to monitor the two (2) 100-ft piles during driving.

5.2 Development Length and Flexure Tests

5.2.1 Introduction

For design, it is necessary to predict the length required to develop the strand's ultimate strength. This development length is the length at which the failure mode changes from bond slippage failure to rupture of the tendons. The design of pile foundations also requires calculation of the pile's flexural capacity.

This section explains the experimental setup, instrumentation layout, and test procedures used for development length and flexure tests in this study. The shear span length was varied to determine the development length of the CFCC strands. An additional test was performed to determine the flexural capacity of the pile. The two development length tests were performed on September 6 and 10, 2013. The flexure test was performed on September 12, 2013.

5.2.2 Test Matrix and Setup

Two (2) of the 40-ft piles were used for experimentation purpose at the FDOT Structures Research Center in Tallahassee, Florida, 45 days after casting. (The third 40-ft pile that had been cast was kept for possible future testing.) The piles were placed in a test setup, similar to the one presented by Gross and Burns (1995). For each test setup, the pile was simply supported. Two (2) development length tests were performed on the first pile, which had a cantilevered end (Figure 5.5a). One (1) flexure test was performed on the second pile, with supports on the ends (Figure 5.5b).

The piles were supported by two (2) steel I-beams. The I-beams were leveled and grouted to the lab's concrete floor with quick-setting anchoring cement. Depending on the span length of the simply-supported section of the pile, the supports were moved into position, and hence the supports were grouted two (2) times for the three (3) tests performed. The curing time for the grout was about 4 hours. Elastomeric bearing pads were placed between the supports and the pile. The height of the support gave the piles about a 2-ft clearance above the testing floor.

A point load was applied to the pile by an Enerpac actuator. As the predicted

(b) Test setup for flexure test

Figure 5.5: Test setups

development length was less than 10 ft, the point load was applied close to the support for the development length tests on the first pile. This load arrangement, along with the cantilever length at the other end, "preserved" the other pile end for an additional test. Load was measured with a load cell and was initially applied on the pile specimen at a rate of 250 lb per second. An elastomeric pad was used under a steel loading plate with a groove that fit the tip of the actuator, as seen in Figure 5.6.

Parameters that were varied for each test are as follows:

- 1. Length of the simply-supported span (S.S. Span)
- 2. Length of the cantilever overhang
- 3. Length of the shear span
- 4. Embedment length of the strand

Test parameters are summarized in Table 5.1. For the development length tests, parameters were chosen to ensure the structural integrity of the cantilever end of the beam, so that two (2) experiments could be performed on one (1) pile specimen. Test P-6–22 Dev, for example, indicates a pile specimen tested for development length of strands, having an embedment length of 6 ft and a cantilever length of 17 ft. After the first test was completed, approximately 6.5 ft of the pile's tested/damaged end

Figure 5.6: Loading setup

was separated from the specimen and discarded. The remaining 33.5–ft length was used for the second test. The damaged end was cantilevered approximately 5.5 ft (see Figure 5.5a), and the undamaged, opposite end of the pile was loaded.

Test	Test	Pile	Simple-Supp.	Shear	Cantilever	Embedment
No.	Designation	No.	Span	Span	Length	Length
			ft	ft	ft	ft
1	P-6–22 Dev	1	22	5	17	6
2	P-10–27 Dev	1	27	9	5.5	10
3	P-38 Flex	2	38	13.3	N.A.	14.3

Table 5.1: Test matrix

5.2.3 Instrumentation for the Development Length Tests

Instrumentation for each development length test was planned to monitor the following:

- 1. Applied load
- 2. Vertical deflections at several points
- 3. Concrete top fiber strains around the load point

4. Strand end slip

The instrumentation layout for the first development length test is shown in Figure 5.7. Six (6) deflection gages were mounted along the length of the pile to monitor vertical deflections. The two (2) adjacent deflection gages placed at the load point location were averaged in the data analysis. Four (4) electrical resistance strain gages were installed to monitor the top fiber strains in the concrete around the load point (Figure 5.7). Strand end slip measurements were made during testing using linear variable displacement transducers (LVDTs). The devices were anchored with clamps to four CFCCs in the bottom of the pile (Figure 5.8). Strand slips, monitored throughout the tests, reflected the displacement of the strand relative to the beam. The test setup is shown in Figure 5.9.

Figure 5.7: Gage layout for first development length test (Plan view) (Not to scale)

Figure 5.8: Strand slip measurement device

Figure 5.9: A pile being tested for development length

5.2.4 Instrumentation for Flexure Test

The flexure test used instruments to measure the following:

- 1. Applied load
- 2. Vertical deflections at several points
- 3. Concrete top fiber strains in the constant–moment region
- 4. Strand end slip

Fourteen (14) strain gages and ten (10) non-contact deflection gages were installed on the specimen, as shown in Figure 5.10.

Two (2) strain gages were located on the concrete surface at mid span (under the actuator location) to measure the top fiber compressive strain. Two (2) other strain gages were placed at 8 in. from the center. Angles were anchored to the side face by drilling holes in the concrete, and then the lasers from the displacement gages were projected on to the angle face (Figure 5.11) to measure the displacement. In addition to these gages, four (4) strand slip gages were installed to measure any strand slip during flexure (Figure 5.8). A single point load was transferred to a spreader beam, which was formed of two (2) steel I-beams. The spreader beam supports caused two (2) point loads to be applied to the pile and thereby a constant-moment region in approximately the middle third of the pile. The weight of the spreader beam and its bearing plates was approximately 3000 lb. The setup is shown in Figure 5.12.

(c) Elevation view – west face

Figure 5.10: Gage layout for flexure test (Not to scale)

Figure 5.11: Laser device setup for measuring displacement

Figure 5.12: Test setup for flexural test

5.2.5 Test Procedure for Development Length and Flexure Tests

For safety purposes, wooden logs were placed under the load point, where the maximum deflection was expected. Load was then applied at a rate of 250 pounds per second until the formation of the first flexural cracks. After that, the rate was changed to 200 pounds per second. The test continued until a bond or flexural failure occurred. A substantial loss in the member's load capacity would be the result of a bond failure, which would be accompanied by strand slippage of one or more strands. Flexure failure is evidenced by vertical cracks in the bottom of the pile and extending upward as the load is increased. When failure was achieved, the pile was unloaded. Crack propagations on the concrete surface were marked after the failure, and a detailed crack pattern was then sketched. A similar procedure was followed for the second test on the first pile, and again for the third test, varying the parameters given in Table 5.1. The results from the tests are discussed in Chapter 6.

5.3 Pile Driving Test Setup

The two (2) 100-ft piles were stored at GATE until a suitable bridge construction project on which to drive them was found. In late January 2014, the piles were delivered to Deer Crossing Bridge (Bridge No. 790207) being constructed on Interstate 4 near milepost 127, west of U.S. Highway 92. This is located in Volusia County between Daytona and Deland. The piles were installed by the contractor, The de Moya Group, Inc., on January 23 and 24, 2014. They were driven adjacent to production piles on End Bent 3-1 located at Station 1177+48.0 on the westbound bridge. The piles were installed on the west end of the bent, near Boring DC-1. See Appendix E for a plan view of the bridge and soil boring logs. See Appendix H for photos of the site and pile driving activities.

The purpose of these pile driving tests was to "test the limits" of the piles. The first pile was driven as a normal pile would be, as determined by FDOT personnel on site, and was then subjected to hard driving during the latter part of installation. The second pile was installed under hard driving conditions to test the limits more and to test for repeatable behavior. Both piles were driven to refusal. After testing, the pile tops were to be cut off to 2 ft below grade, and the piles were to be covered by soil and abandoned in place.

Both EDC and PDA were used to monitor the stresses in the piles while they were being driven. During the installation of piles, high impact forces imposed by the pile driver hammer occur. The hammer blow causes a compression wave that travels at about the speed of sound. When it reaches the pile tip, it reflects. Depending on the soil resistance, the reflecting wave can cause compressive or tensile stresses in the pile. This wave can cause damage to the concrete, high stresses in the prestressing strands, and possible rupturing of the bond between the steel and concrete.

Additional details regarding the tests (for example, the pile driving hammer and cushion details) are provided in a test summary report prepared by FDOT (see Appendix E).

CHAPTER 6

EXPERIMENTAL TEST RESULTS

6.1 Introduction

One purpose of this experimental program was to determine the transfer length of CFCC strands by way of measuring concrete strains at the ends of the piles while the strands were being detensioned in the casting bed. Another purpose was to determine the development length of the CFCC strands, in addition to determining the flexural strength of the pile. Lastly, the purpose was to test the behavior of the pile while it was being driven into the ground as part of a bridge foundation. This chapter reports the results that were obtained from all of these tests.

6.2 Transfer Length Measurements

6.2.1 General

The concrete strength at 24 hours after casting was 5370 psi. This is an average of two (2) cylinder strengths, 5320 and 5420 psi, as determined by GATE. As explained in Section 5.1, three (3) 40–ft prestressed concrete piles were monitored during release of prestressing. Both ends of each pile were instrumented with strain gages and were designated as follows: 3N, 3S, 4N, 4S, 5N, and 5S, where the numbers 3 through 5 represent the pile number as per the bed layout shown in Figure 4.5. 'N' represents the North end, which was the stressing end of the bed, and 'S' represents the South end, which was the non–stressing end. The strain gage layout is shown in Figure 5.1, and a photo of the strain gages near the stressing end is in Figure 6.1.

Figure 6.1: Strain gage layout at stressing end

6.2.2 Measured Strains at Transfer

Figure 6.2 shows the strain profile along the length of pile '3', with each line representing the strains after a strand was cut. This demonstrates the increasing compressive stress on the pile as the force in each strand was released. The strain profiles for all six (6) pile ends after 75% and 100% release are shown in Figures 6.3 through 6.14. Here, 75% release refers to 15 strands being released, and 100% release refers to all strands being released. In these figures, the strain is shown from the pile end to the mid span. The strains reported in Figures 6.2–6.4, 6.7–6.8, and 6.11–6.12 for the stressing ends are average readings of pairs of strain gages located at the top corners of the pile specimen. For example, the plotted strain at 3 in. from the pile end is the average of the strains in strain gages S101 and S102 (Figure 5.2).

There are two commonly-used methods to measure the transfer length of a strand: (1) the 95% Average Maximum Strain (AMS) method (Russell and Burns, 1996) which uses the measured strains along the transfer zone of a prestressed member and (2) the "draw-in" or "end-slip" method. The AMS method was used in this study. The idealized theoretical strain profile as explained by Mahmoud and Rizkalla (1996) would show a linear increase in strain in the transfer zone, followed by a uniform strain plateau. However, for the pile end '4N', the data shows a linear increase in strain in the transfer zone, but a uniform strain plateau was difficult to define. Therefore, for this pile end, the transfer length was estimated by a visual analysis.

For all other pile ends, the 95% AMS method was used to determine the transfer length of CFCC. The procedure as explained by Russell and Burns (1996) is as follows:

- 1. Strains after the prestress release are recorded and used to determine the strain profile within the transfer zone.
- 2. Data may be smoothed if required, by taking the strain at any point 'b' as the average of the strains at three adjacent points centered at 'b'.

- 3. The strain plateau region, or the distance over which strain is at a nearly constant maximum, is estimated visually. The average strain within the plateau is calculated. A line corresponding to 95% of this average strain is superimposed on the strain profile.
- 4. The intersection of the 95% AMS and the strain profile defines the transfer length.

The transfer lengths determined from the AMS method for the 75% and 100% stress release measurements were averaged. These average transfer lengths for each pile end are given in Table 6.1.

Figure 6.2: Strain profile for pile 3 at release

Figure 6.3: Strain profile for pile end 3N at 75% stress release

Figure 6.4: Strain profile for pile end 3N at 100% stress release

Figure 6.5: Strain profile for pile end 3S at 75% stress release

Figure 6.6: Strain profile for pile end 3S at 100% stress release

Figure 6.7: Strain profile for pile end 4N at 75% stress release

Figure 6.8: Strain profile for pile end 4N at 100% stress release

Figure 6.9: Strain profile for pile end 4S at 75% stress release

Figure 6.10: Strain profile for pile end 4S at 100% stress release

Figure 6.11: Strain profile for pile end 5N at 75% stress release

Figure 6.12: Strain profile for pile end 5N at 100% stress release

Figure 6.13: Strain profile for pile end 5S at 75% stress release

Figure 6.14: Strain profile for pile end 5S at 100% stress release

Pile End	Transfer Length (in.)
3N	29.0
3S	21.5
4N	25.5
4S	22.0
5N	28.0
55	24.5
Average Transfer Length	25.0

 Table 6.1:
 Transfer length for specimen pile ends

6.3 Development Length Test Results

Two (2) development length tests on one (1) 40-ft pile specimen were conducted. The test results are presented in this section, including load versus deflection plots, as well as sketches of cracking patterns that occurred.

6.3.1 Test 1

The pile specimen was prepared for testing as explained in Chapter 4. For the first test, the embedment length was 6 ft, the simply-supported span length was 22 ft, and the cantilever length was 17 ft. The plot of applied load versus deflection, calculated from the average of deflection gages D3 and D4 adjacent to the applied load, is shown in Figure 6.15. The first flexural crack was observed at a load of 175 kips and extended up to 2 ft from the load point to the free end of the pile. The flexural cracks had propagated to 4 in. from the top fiber. The load was applied until failure occurred at 205 kips. The final crack pattern is shown in Figures 6.16 and 6.17. The maximum top fiber strain in the vicinity of the load point at failure was 0.0012. The applied load versus the average strain in the four (4) gages around the load point (Figure 5.7) is shown in Figure 6.18. During loading, one of the strain gages next to the load point location gave erroneous data at 40 kips, but after 43 kips, both the strain gages gave similar readings. There was no observable strand end slip on any of the four (4) instrumented CFCC strands throughout the test.

Figure 6.15: Load vs. Deflection for Test 1

Figure 6.16: Failure crack pattern on east face for Test 1

Figure 6.17: Failure crack pattern on west face for Test 1

Figure 6.18: Load vs. Strain for Test 1

6.3.2 Test 2

The pile specimen from Test 1 was used again for Test 2. The structural integrity of the cantilevered end from the Test 1 setup remained undisturbed throughout Test 1, so this pile end (opposite the tested end from Test 1) was used to perform Test 2. For this second test, the embedment length was 10 ft, the simply-supported span length was 27 ft, and the cantilever length was approximately 5.5 ft. The loading procedure was similar to Test 1, as were the strain gage and deflection gage layouts. A plot of applied load versus deflection, calculated from the average of deflection gages D3 and D4 adjacent to the applied load, is shown in Figure 6.19.

Figure 6.19: Load vs. Deflection for Test 2

The first flexural crack occurred at a load of 101 kips, on the bottom of the pile under the load application point. The cracks propagated up to 3 in. from the top fiber and extended up to 3 ft from the load point towards the free end of the pile. The test resulted in a flexural failure at a load of 120 kips and a deflection of 2.8 in. The maximum strain in the top fiber in the vicinity of the load point at failure was 0.00138. Local concrete crushing occurred on the top of the pile near the load point at failure (Figure 6.20). Sketches of the crack patterns on the east and west faces are shown in Figures 6.21 and 6.22. There was no observable strand slip in any of the four (4) instrumented CFCC strands throughout the test.

Figure 6.20: Concrete crushing at top in Test 2

Figure 6.21: Failure crack pattern on east face for Test 2

Figure 6.22: Failure crack pattern on west face for Test 2

6.4 Flexural Strength Test Results

Three (3) 4-in. x 8-in. concrete cylinders were tested on the day of the flexural strength test and had an average compressive strength of 9500 psi. The applied load versus deflection is plotted in Figure 6.23, where the plotted deflections are averages of gages D5 and D6 at mid span. Failure occurred at a load of 113 kips and a mid-span deflection of 9.63 in. (Figure 6.23). This does not include the effects due to the self weight of the pile or the spreader beam weight. The maximum concrete strain recorded was 1300 microstrains, from strain gages S3 and S4 at mid span. There was no strand end slip observed in any of the four (4) instrumented strands throughout the test. Sketches of the crack pattern on the east and west faces are shown in Figures 6.24 and 6.25. The cracks were uniformly distributed in the constant-moment region and extended up to 5 ft from the load points toward the ends of the pile. At the maximum load, the flexural cracks propagated to about 3 in. from the top fiber. Failure of the pile occurred under one of the load transfer points on the spreader beam shown in Figure 6.26.

As previously stated, the pile specimen failed at an applied load of 113 kips, which equates to a calculated moment of 753 kip–ft. This generated a total calculated test moment of 875 kip–ft, including an initial calculated moment of 122 kip–ft due to the self weight of the pile and the spreader beam weight of approximately 3000 lb. The theoretical pile capacity was calculated to be 809 kip–ft (see Appendix F), for a test–to–theoretical moment ratio of 1.08 (Table 6.2).

The results obtained from the transfer length, development length and flexural tests are discussed in Chapter 7.

Figure 6.23: Load vs. Deflection for flexure test

Figure 6.24: Failure crack pattern on east face for flexure test

Figure 6.25: Failure crack pattern on west face for flexure test

Figure 6.26: Failure under one of the load points

	Moment Capacity (kip–ft)
Theoretical	809
Test	875
Ratio (Test/Theoretical)	1.08

Table 6.2: Theoretical vs. test moment capacity

6.5 Pile Driving Test Results

6.5.1 Introduction

Both EDC and PDA were used to monitor the piles during driving. FDOT also provided geotechnical expertise and assessed the performance of the pile through observations and EDC and PDA test results. Data and reports are included in Appendix E, and selected photos are in Appendix H. With the researchers, representatives from FDOT Structures Research Center and FDOT Central Office were on site during driving of the first pile on January 23, 2014. For the second pile, driven on January 24, FDOT representatives were not able to attend.

The piles were designed to have a permanent compression of 1000 psi at the effective prestress level, after losses. The piles were subjected to 2765 and 3139 hammer blows for Piles 1 and 2, respectively. See Chapter 7 for a discussion of the test results.

Two (2) 4-in. x 8-in. cylinders were tested at the FDOT Structures Research Center on January 28, 2014. The compressive strengths were 9,849 and 10,313 psi, for an average of 10,080 psi.

6.5.2 Embedded Data Collectors (EDC) Results

EDC data was gathered and reported by Applied Foundation Testing, Inc. (AFT). The Embedded Data Collector was unable to connect to the second pile, so data was collected only for the first pile driven on January 23. EDC results and the report prepared by AFT are provided in Appendix E.

6.5.3 Pile Driving Analyzer[®] (PDA) Results

PDA data was gathered for both piles and reported by GRL Engineers, Inc. GRL's report on the results, including the pile driving logs kept by the field inspector, is

provided in Appendix E.

6.5.4 FDOT Summary Report

FDOT's Assistant State Geotechnical Engineer, Rodrigo Herrera, P.E., evaluated the test results and prepared a summary report on the pile driving activities and pile performance. The report is in Appendix E. It provides a chronicle of the driving operations, including details about the pile cushions that were used and when they were replaced. The report also notes cracking that was observed and comments on the pile integrity.

Herrera calculated maximum stress limits and compared them to the stresses to which the piles were subjected. Although driving and subsurface conditions prevented the development of maximum compression stresses of 6.25 ksi, per FDOT Specification 455-5.11.2 (FDOT, 2014a) and based on *measured* concrete compressive strength, the stresses in the piles *did* exceed the typical limit used in production pile driving (which is 3.6 ksi, assuming a *nominal* 6000 psi concrete strength and 1000 psi for initial prestress). In addition, the theoretical limit on *tension stress*, 1.38 ksi based on *measured* concrete compressive strength, was exceeded during driving.

The pile heads were locally damaged; the concrete spalled, likely due to the intentional use of thin cushions and hard driving. Other than to the pile heads, there was no major pile damage. As noted by Herrera, the piles' resistances were well beyond the 900-kip suggested driving resistance per FDOT's Structures Design Guidelines (FDOT, 2014b).

CHAPTER 7

DISCUSSION

7.1 Introduction

The results obtained from the experimental program were reported in Chapter 6. In this chapter, the findings will be discussed. Also, the challenges associated with precasting CFCC–prestressed piles, as well as the differences between using CFCC and steel prestressing, will be explained.

7.2 Transfer Length of CFCC

The strain gage data taken during prestress release was analyzed using the 95% AMS method for five (5) pile ends out of six (6). The end '4N' did not show a distinct strain plateau and hence the strain profile was evaluated visually for the transfer length. The strain profiles for all six (6) transfer length locations are presented in Figures 6.3 through 6.14, and the values of the transfer lengths are shown in Table 6.1.

The transfer length values are consistently lower than Equation 7.1 recommended by ACI 440.4R–04.

$$L_t = \frac{f_{pi}d_b}{\alpha_t f'_{ci}^{0.67}}$$
(7.1)

The factor α_t was determined by Grace (2000) to be 11.2 (for psi and in. units) or 2.12 (for MPa and mm units); this results in a predicted transfer length of 37.3 in. from Equation 7.1 for f_{pi} of 220 ksi. The observed transfer length was 25 in., which is 33% lower than predicted. Mahmoud et al. (1999) proposed for α_t a value of 25.3 (for psi and in. units) or 4.8 (for MPa and mm units) to predict the transfer length of a CFCC tendon. This results in a predicted transfer length of 16.5 in., which is 34% lower than observed.

From Table 6.1, the transfer lengths at the stressing ends, denoted by 'N', are higher than the transfer lengths at the non-stressing ends, denoted by 'S'. The average ratios of non-stressing to stressing end transfer lengths ranged from 0.74 for pile '3' to 0.86 for piles '4' and '5'. According to Pozolo (2010), transfer lengths might be influenced by factors such as concrete casting location, cutting location, and the use of multiple batches of concrete. However, the strain gage locations (offsets from the pile's longitudinal axis) were different for the non-stressing ends than for the stressing ends, which could explain the different transfer length results.

Furthermore, the transfer length observed in this study was 31% less than the AASHTO provision of $60d_b$ (36 in.). In ACI 318-11, the transfer length of a prestressing strand is as follows:

$$L_t = \frac{f_{se}d_b}{3} \tag{7.2}$$

This results in a predicted transfer length of 40.2 in., using an effective prestress f_{se} of 201 ksi after all prestress losses, as calculated per PCI (2010). Note that the equation does not account for the concrete compressive strength at the time of release. The observed transfer length was 38% less than that predicted by Equation 7.2.

7.3 Development Length Tests

A crack is termed as "flexural" if it originates as a vertical crack that propagates upwards from the bottom surface. Tests 1 and 2, performed on the two (2) ends of one (1) 40-ft pile, failed in flexure. The shortest embedment length used in these two (2) test setups was 72 in. Development length is the shortest embedment length that develops the strand's flexural capacity without any bond slip, so these tests indicate that the strand was developed in less than 72 in.

Table 7.1 provides development length predictions per equations from ACI (2011), AASHTO (2011), Mahmoud and Rizkalla (1996), and Lu et al. (2000). The equation by Lu et al. (2000) for predicting development length is as follows:

$$L_d = \frac{1}{3} f_{se} d_b + \frac{3}{4} (f_{pu} - f_{se}) d_b$$
(7.3)

Equation 7.3 results in a predicted development length of 102 in., which is 42% higher than the shortest embedment length tested in this study.

See Chapter 2 for the equations by others.

The predicted development length according to ACI and AASHTO is 123 in., which is 71% higher than the shortest embedment length tested. The low value of the

	Predicted Length (in.)
Lu et al. (2000)	102
ACI 318-11 and AASHTO LRFD	123
Mahmoud and Rizkalla (1996)	29
Mahmoud and Rizkalla (1996) with Grace (2000) α_t	49

 Table 7.1: Development length predictions

development length might be due to the characteristic properties of CFCC and also might be a result of using high–strength, self–consolidating concrete. For a more accurate prediction of the development length, more testing would be needed.

7.4 Flexural Strength Tests

Table 6.2 shows that the flexural strength of the concrete pile prestressed with CFCC is 8% higher than the theoretically-predicted strength. Furthermore, the mid span deflection at failure was 9.26 in., which indicates high ductility. In research conducted by Abalo et al. (2010), tests were performed on a 24–in. diameter circular concrete pile, prestressed with 20 0.5–in. diameter strands which were wrapped with a CFRP mesh in lieu of spiral ties. The performance of this specimen was compared to a control pile, a 24–in. square prestressed concrete pile prestressed with 16 0.6–in. diameter steel strands. The results of the tests on the control pile can be compared to the 24–in. square pile tested in the current study, although a direct comparison should not be made. The pile in the current study contained 20 0.6–in. diameter CFCC strands instead of 16 steel strands, and the strand layout and stressing forces were different. Table 7.2 compares the flexure test results on the control pile from Abalo et al. (2010) to the results of the CFCC pile test in this study.

Moment	Abalo et al. (2010)	CFCC-Prestressed
Capacity	Control Pile	Pile Specimen
	kip-ft	kip-ft
Theoretical	625	809
Test	759	875
Ratio (Test/Theoretical)	1.21	1.08

Table 7.2: Moment capacity comparison

The CFCC-prestressed pile capacity was greater than the theoretical capacity and greater than the control pile from Abalo et al. (2010). There was no strand end

slip throughout the tests, which demonstrates that the CFCC has a good bond with concrete.

7.5 Pile Driving Tests

Both piles performed well during installation at the Interstate 4 bridge construction site, even though they were subjected to hard driving conditions and high levels of stress. There was no major damage to the piles, other than concrete spalling at the pile heads, which was likely due to the intentional use of thin driving cushions.

Pile capacities calculated by PDA were approximately twice the value of FDOT's suggested driving resistance for a conventional 24-in. prestressed pile. The data also suggests that there was no significant loss of prestress.

7.6 Lessons Learned from First Attempt to Prestress

Before September 2012, plans were made to precast five (5) concrete piles prestressed with 20 0.5–in. diameter CFCC strands. The casting setup and layout were similar to that described in Chapter 4. On September 10-12, 2012, the first attempt was made to cast the piles using 0.5–in. diameter strands. The only difference between the piles that were attempted in September 2012 and the piles that were successfully cast in Summer 2013, about which the results in this report are based, is that 0.5–in. diameter strands were used instead of 0.6–in. diameter strands. The coupler dimensions also differed because of the different strand diameters.

In the first attempt, after the CFCC strands, spirals, and couplers were installed in the precasting bed, the stressing operations began. Initially, all strands were partially stressed in the sequence shown in Figure 7.1. Thereafter, full stressing to 29 k began. While the third strand was about to be fully stressed, the first CFCC strand that had been fully stressed slipped from the coupling device. All prestressing operations were stopped.

The researchers summarized the efforts in a short presentation, which is included in Appendix G.

Figure 7.1: Stressing sequence for first casting attempt

The CFCC coupling device from which the strand had slipped was locally investigated by the researchers, CFCC manufacturer, and precasting personnel at GATE, and possible reasons for the slippage were speculated as follows:

1. Hoyer Effect

During the prestressing operation, the strand might have reduced in diameter, thus reducing the frictional forces between the wrapping mechanism and the coupler sleeve.

2. Length of the wedges

The length of the wedges gripping the CFCC strand after the seating was achieved might not have been adequate.

3. Twisting of the CFCC strands

It was observed that the strand had twisted during the stressing operation. This might have resulted in loss of contact between the wrapping material and the CFCC strand.

The CFCC manufacturer, Tokyo Rope, took several couplers (with short extensions of strands attached) to Japan and performed an investigation of the failed coupler as well as other couplers that had been installed. They concluded that the molybdenum lube spray that was used was not able to seat the wedges completely due to lack of lubrication and hence the seated length of the wedges was inadequate to generate the frictional forces required to grip the CFCC strand. To remedy this at the next attempt, in Summer 2013, Tokyo Rope provided their own special molybdenum spray.

Tokyo Rope also noted that the seating of the wedges was not consistent from coupler to coupler. To remedy this, they developed the coupler installation procedure described in Chapter 4 and Appendix A. The main differences between the previous installation procedure (which was used for prestressing the 0.5–in. diameter strands in Summer 2012) and the new technique used in Summer 2013 are given below:

1. The Mesh Sheet Wrapping

The earlier technique of wrapping the mesh sheet to the strand employed two (2) separate mesh sheets (Figure 7.2a). This may not provide complete wrapping on the CFCC strand. The new technique (Figure 7.2b) involved wrapping the CFCC strand uniformly with a continuous mesh sheet and provides a better and more uniform grip on the strand.

(a) Earlier Technique (2012)

(b) New Technique (2013)

Figure 7.2: Mesh sheet installation technique

2. Wedge Installation

In the new technique, the wedges were marked at 55 mm from the larger end of the wedges. A pneumatic jack was used to install the wedges into the sleeve. The previous method was to hammer the wedges into the sleeve. The new method provided a uniform and consistent installation of the wedges (Figure 7.3).

The new techniques used to install the couplers were successful in prestressing the strands and are now a standard used by Tokyo Rope.

(a) Earlier Technique (2012)

(b) New Technique (2013)

Figure 7.3: Wedge installation method

CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 Summary

This study investigated the following: installation procedures for CFCC strands and stressing couplers; CFCC bond characteristics (transfer length and development length); and the flexural capacity of a pile that is prestressed with CFCC strands. In addition, the behavior of a CFCC-prestressed pile during driving operations was observed and analyzed.

To meet the research objectives, piles were cast and several tests were performed. The research activities and tests were as follows:

- Five (5) 24-in. square prestressed concrete piles were cast using 20 0.6-in. diameter CFCC prestressing strands, manufactured by Tokyo Rope Manufacturing Company. Produced at Gate Precast Company in Jacksonville, Florida, these five (5) piles included two (2) 100-ft and three (3) 40-ft specimens.
- 2. Transfer length tests were performed at GATE on the three (3) 40-ft piles.
- 3. Two (2) development length tests were performed on one (1) of the 40-ft piles at the FDOT Marcus H. Ansley Structures Research Center in Tallahassee, Florida.
- 4. One (1) of the 40-ft piles was tested for flexural strength at the FDOT Marcus H. Ansley Structures Research Center. The third 40-ft pile is stored at the laboratory for future studies, if needed.
- 5. The two (2) 100-ft piles were driven at an Interstate 4 bridge construction site in Volusia County, Florida, to monitor the static resistance of the piles and the pile behavior during driving.

8.2 Conclusions

8.2.1 Transfer Length of CFCC

An analysis of the transfer length tests, particularly of the data obtained from the electrical resistance strain gages, suggests that the CFCC strands have a 25–in. transfer length, which is 38% and 31% less than that predicted by ACI and AASHTO, respectively, for steel strands. The observed transfer length is 33% lower than the transfer length calculated from ACI 440.4R–04 and using the alpha factor by Grace (2000). Testing of more pile specimens could be performed to determine an alpha factor for CFCC strand transfer length predictions. Nonetheless, the observed transfer length is conservative, in that it is less than the predicted values.

The strain variation at the pile ends shows that the transfer lengths observed at the stressing ends were higher than those at the non–stressing ends. This could be due to the differing strain gage layouts at the ends: pairs of gages were placed near the corners at the stressing ends, whereas a single line of gages was placed along the pile centerline at the non–stressing ends.

8.2.2 Development Length of CFCC

The Test 1 pile had an embedment length of 72 in. Because the pile failed in flexure, rather than by failure of the strand-to-concrete bond, the development length could not be determined in this study. However, it can be concluded that the development length of CFCC is less than 72 in. and therefore also less than the AASHTO prediction of 123 in. for steel strands and with CFCC's value for GUTS.

8.2.3 Flexural Strength of CFCC–Prestressed Pile

The flexural strength of the CFCC–prestressed concrete pile was 8% higher than theoretical. The test results suggest that the flexural performance of piles with CFCC strands is comparable to that of piles with steel strands. The cracking pattern in all three (3) tests (the two (2) development length tests and the flexural test) was as anticipated for a flexural failure. In all tests, there was no end slip in any of the strands, which indicates a good bond characteristic of the CFCC with concrete. In addition, the pile's mid span had deflected over 9 in. at failure, which indicates good ductility. This is consistent with the approximate 10–in. deflection of concrete piles with similar dimensions that were prestressed with steel and tested by Abalo et al. (2010).

8.2.4 Pile Driving

Two (2) 100-ft piles were subjected to hard driving conditions and high internal compressive and tensile stresses. They both performed well, with no major damage or loss of prestress.

8.2.5 Specimen Production

There are unique challenges associated with using CFCC strands in a prestressed concrete pile. The precaster has to adapt to a new technique of stressing the strand with respect to:

- 1. Coupler installation
- 2. Proper handling of the CFCC to prevent damage
- 3. Concrete consolidation during placement, preferably without a vibrator to prevent damage to strand
- 4. The stressing method of CFCC strands, with regard to a slower-than-normal stressing rate recommended by the manufacturer
- 5. Use of a different header material (e.g., wood instead of steel) to prevent damage to CFCC strands while installing them in the precasting bed

8.3 Suggestions for Future Research

Suggestions for future research are as follows:

- 1. More testing could be performed to better estimate the value of the alpha factor in the ACI 440.4R–04 equation, by varying parameters such as the diameter of the CFCC, the prestressing force, and the concrete strength.
- 2. More tests could be performed to evaluate the development length of CFCC in prestressed concrete piles. The conclusions reported herein are based on only two (2) tests, for which the pile failed in flexure rather than the CFCC failing in bond.
- 3. Research should be conducted to further improve the anchorage system for the CFCC strands, with the goal being to make installation easier and faster for the precaster.

- 4. Specifications need to be developed for the CFCC material, if it is to be specified for use on future FDOT bridge construction projects. For example, necessary precautions or restrictions on the handing and storage of CFCC strands need to be specified. This includes acceptable levels of incidental damage.
- 5. Long-term properties should be further evaluated as part of specifications development.
- 6. Because the CFCC material does not corrode, it is possible that the 3-in. concrete cover could be reduced. Testing could be done to verify this, for example, to make sure that an adequate amount of concrete surrounds the strand to develop it. However, a reduced concrete cover would result in the need for precasters' standard templates to be modified.
- 7. In this test program, standard steel lifting loops to handle the piles were installed. An alternative lifting loop, made of a non-corrosive material, could be designed and tested if a pile completely devoid of steel were desired.
- 8. Other uses of CFCC strands should be investigated, particularly for structures that normally utilize steel prestressing strands in harsh or marine environments. For example, using CFCC instead of steel strands in sheet piles could be beneficial and cost effective in the long term.
BIBLIOGRAPHY

- AASHTO (2011). AASHTO LRFD Bridge Design Specifications, 6th Ed., 2013 Interim Revisions. American Association of State Highway and Transportation Officials, Washington, D.C.
- Abalo, V., Potter, W., and Fallaha, S. (2010). "Testing precast pile with carbon fiber reinforced polymer mesh". Research Report, Florida Department of Transportation.
- ACI (2004). ACI 440.4R-04 Prestressing Concrete Structures with FRP Tendons. American Concrete Institute, Farmington Hills, MI.
- ACI (2011). ACI 318-11 Building Code Requirements for Reinforced Concrete. American Concrete Institute, Detroit, Michigan.
- Andrawes, B., Shin, M., and Pozolo, A. (2009). "Transfer and development length of prestressing tendons in full-scale AASHTO prestressed concrete girders using selfconsolidating concrete." Report No. ICT-09-038, Illinois Center for Transportation.
- Balazs, G. L. (1993). "Transfer lengths of prestressing strands as a function of draw-in and initial prestress." PCI Journal, 38(2), 86–93.
- Cousins, T., Johnston, D. W., and Zia, P. (1990). "Development length of epoxycoated prestressing strand." ACI Materials Journal, 87(4), 309–318.
- Domenico, N. G. (1995). "Bond properties of CFCC prestressing strands in pretensioned concrete beams". Master's thesis, University of Manitoba.
- FDOT (2014a). FDOT Standard Specifications for Road and Bridge Construction. Florida Department of Transportation, Tallahassee, FL.
- FDOT (2014b). Structures Design Guidelines, FDOT Structures Manual Volume 1. Florida Department of Transportation, Tallahassee, FL.
- Grace, N. (2000). "Transfer length of CFRP/CFCC strands for double-t girders." PCI Journal, 45(5), 110–126.
- Grace, N. (2003). "First CFRP bridge in the USA." Construction and Technology Research Record, Michigan Department of Transportation, 97.

- Grace, N. (2007). "5-years monitoring of first CFRP prestressed concrete 3-span highway bridge in USA." Proceedings of the 12th International Conference on Structural Faults & Repair-2008, Engineering Technics Press.
- Grace, N., Abdel-Sayed, G., Navarre, F. C., Bonus, R. B. N. W., and Collavino, L. (2003). "Full scale test of prestressed double-tee beams." *Concrete International*, 25(4), 52–58.
- Grace, N., Enomoto, T., Baah, P., and Bebaway, M. (2012). "Flexural behavior of CFRP precast prestressed concrete bulb t-beams." ASCE Journal of Composites for Construction, 16(3), 225–234.
- Gross, S. P. and Burns, N. H. (1995). "Transfer and development length of 15.2 mm (0.6 in.) diameter prestressing strand in high performance concrete: Results of the Hoblitzell-Buckner beam tests." Research Report FHWA/TX-97/580-2, Center for Transportation Research, Austin, Texas.
- Herrera, R., Jones, L., and Lai, P. (2009). "Driven concrete pile foundation monitoring with Embedded Data Collector system." *Contemporary Topics in Deep Foundations*, M. Iskander, D. F. Laefer, and M. H. Hussein, eds., Proceedings from the International Foundation Congress and Equipment Expo, Orlando, Florida, 621–628.
- Issa, M., Sen, R., and Amer, A. (1993). "Comparative study of transfer length in fiber and steel pretensioned concrete members." *PCI Journal*, 38(6), 52–63.
- Logan, D. R. (1997). "Acceptance criteria for bond quality of strand for pretensioned prestressed concrete application." *PCI*, 42.
- Lu, Z., Boothby, T. E., Bakis, C. E., and Nanni, A. (2000). "Transfer and development length of FRP prestressing tendons." *PCI Journal*, 45, 84–95.
- Mahmoud, Z. I. and Rizkalla, S. H. (1996). "Bond properties of CFRP prestressing reinforcement." Proceedings of the First Middle East Workshop on Structural Composites for Infrastructure Applications, S. El-Sheikh, ed., Egypt.
- Mahmoud, Z. I., Rizkalla, S. H., and Zaghloul, E.-E. R. (1999). "Transfer and development lengths of Carbon Fiber Reinforced Polymers prestressing reinforcement." ACI Structural Journal, 96(4), 594–602.
- PCI (2010). PCI Design Handbook: Precast and Prestressed Concrete, 7th Ed. Precast/Prestressed Concrete Institute, Chicago, IL.
- Persson, B. (2001). "A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal concrete." Cement & Concrete Research, 193–198.

- Pozolo, A. (2010). "Transfer and development length of steel strands in full scale prestressed self-consolidating concrete bridge girders". Master's thesis, University of Illinois Urbana-Champaign.
- Rohleder, J., Tang, B., Doe, T. A., Grace, N., and Burgess, C. J. (2008). "Carbon Fiber-Reinforced Polymer strand application on cable-stayed bridge, Penobscot Narrows, Maine." *Transportation Research Record: Journal of the Transportation Research Board*, 2050(17), 169–176.
- Russell, B. and Burns, N. (1996). "Measured transfer lengths of 0.5 and 0.6 in. strands in pretensioned concrete." *PCI Journal*, 41(5), 44–65.
- Taerwe, L., Lambotte, H., and Miesseler, H. (1992). "Loading tests on concrete beams prestressed with Glass Fiber Tendons." *PCI Journal*, 37, 86–89.

Appendices

APPENDIX A

CFCC PRODUCT INFORMATION

CFCC MATERIAL PROPERTIES

CARBON FIBER COMPOSITE CABLE (CFCC)

by Tokyo Rope Manufacturing Co., Ltd.

MATERIAL CHARACTERISTICS & PROPERTIES

<u>for 1x7_12.5¢ strand</u>				
High Tensile Strength	2.69 kN/mm ²	Equal to steel strands		
High Tensile Modulus	155 kN/mm ²	Similar to steel strands		
Lightweight	1.6 specific gravity	About 1/5th of steel strand weight		
Low Linear Expansion	0.6x10⁻ ⁶ /°C	About 1/20th of steel		
High Corrosion Resistance		High acid resistance and alkali resistance		
Non Magnetic Interact				
Flexible		Can be coiled		
Low Relaxation Loss	1.3% at 70% guar. cap. at 1000 hours	Similar to steel strands		

STRAND PROPERTIES

		Effective cross-	Guaranteed	Nominal	Tensile elastic
Designation	Diameter	sectional area	capacity	mass density	modulus
(Configuration diameter)	(mm)	(mm²)	(kN)	(g/m)	(kN/mm²)
U 5.0 <i>φ</i>	5.0	15.2	38	30	167
1x7 7.5 ϕ	7.5	31.1	76	60	155
1x7 10.5 ϕ	10.5	57.8	141	111	155
1x7 12.5 ϕ	12.5	76.0	184	145	155
1x7 15.2 ϕ	15.2	115.6	270	221	155
1x7 17.2φ	17.2	151.1	350	289	155
1x19 20.5 <i>φ</i>	20.5	206.2	316	410	137
1x19 25.5 ϕ	25.5	304.7	467	606	137
1x19 28.5 ϕ	28.5	401.0	594	777	137
1x37 35.5 <i>φ</i>	35.5	591.2	841	1185	127
1x37 40.0 ϕ	40.0	798.7	1200	1529	145

CFCC SPECIFICATION FROM TOKYO ROPE / CABLE TECHNOLOGIES

No. CTCF13-002A

CFCC SPECIFICATION

FOR

24" SQUARE PRESTRESSED CONCRETE PILE

May 21, 2013

Cable Technologies North America, Inc.

26200 Town Center Drive, Novi, MI 48375

Contents

1 General 1.1 Scope 1.2 Specifications to be applied 1.3 Contact line	1
 2 Quality and quantity of product 2.1 CFCC Strands 2.2 Anchoring devices 2.3 CFCC Ties 	3
 3 Specifications 3.1 CFCC Strands 3.2 Anchoring devices 3.3 CFCC Ties 	9
 4 Material 4.1 Carbon fiber prepregnation 4.2 Wrapping fiber 4.3 Wedges, Sleeves and Couplers 4.4 Polinet sheets and stainless steel meshes 4.5 Braid grips 	10
 5 Test and inspection 5.1 Items and number of samplling 5.2 Method of test and inspection 	11
6 Packing and indication	12
7 Documents to be submitted	15

1 General

1.1 Scope

This specification covers shop fabrication, test, inspection and packing of the CFCC Strands and CFCC Ties for the 24" SQUARE PRESTRESSED CONCRETE PILE.

1.2 Specifications to be applied

The CFCC Strands and Ties shall be manufactured based upon the requirements documented by drawings and statements in the following specifications.

(1) FDOT DESIGN STANDARDS FY 2012/2013
 40'-0" 24" SQUARE PRESTRESSED CONCRETE PILE (SHEET NO.1)
 100'-0" 24" SQUARE PRESTRESSED CONCRETE PILE (SHEET NO.1)

All CFCC for the Strands and Ties shall have the performance stated in the following data manual.

(2) Technical Data on CFCC, 2012 Tokyo Rope

The CFCC strands and ties shall be processed and manufactured using the following standards and recommendations.

(3) JIS Japanese Industrial Standards, the latest version

(4) Recommendation for Design and Construction of Concrete Structures Using Continuous Reinforcing Materials, 1997 Japan Society of Civil Engineers

(5) Manufacturing Standard of CFCC, Tokyo Rope, the latest version.

The codes and standards specified in the tender documents are in general to be applied. The manufacture may use other codes / standards in the alternative results in a final structure with equal or improved standard.

1.3 Contact line

Information Office

Name and Position	TEL No.	FAX No.	
Noriyoshi Inoue	010 767 4065	010 767 4065	
Cable Technologies North America, Inc.	919-707-4903	919-707-4905	
Kenichi Ushijima			
Cable Technologies North America, Inc	248-449-8470	248-449-8471	
Senior Engineer			

2 Quality and quantity of product

2.1 CFCC Strands

(1) Construction of CFCC Strands

The CFCC Strands shall consist of the CFCC 1×7 15.2ϕ . The properties of the CFCC 1×7 15.2ϕ and their material shall be in accordance with section 3.1 and chapter 4.

Fig. 2-1 Cross section of CFCC $1 \times 7 15.2 \phi$

(2) Length and number of CFCC Strands

Length of one coil	Number of coils	Total length
1,174m (3,850ft)	2	2,348m (7,700ft)

Table 2-1 Length and number of pieces of CFCC Strands

2.2 Anchoring devices

(1) Details of Anchoring devices

The anchoring device shall consist of the wedge, sleeve and coupler in Fig. 2-2. The details of the wedge, sleeve and coupler shall be as shown in Fig. 2-3. The configuration of the mesh sheet shall be as shown in Fig. 2-4. The appearance of the braid grip shall be as shown in Pic. 2-1. The properties of the wedge, sleeve and coupler shall be in accordance with chapter 4.

Fig. 2-2 Schematic of anchoring devices

Fig. 2-3 Shapes of the anchoring wedge, sleeve and coupler (Unit: mm)

Fig. 2-4 Configuration of the mesh sheets (Unit: mm)

Pic. 2-1 Appearance of the braid grip

(2) Number of Anchoring devices

Table 2-2	Number	of anch	oring	devices
-----------	--------	---------	-------	---------

ltem	Number of items	Extra amount	Total
Wedge	40 sets	_	40 sets
O ring	40 pieces	10 pieces	50 pieces
Sleeve	40 pieces	-	40 pieces
Coupler	40 pieces	-	40 pieces
Mesh sheet	40 sets	10 sets	50 sets
Braid grip 💥	14 pieces	3 pieces	17 pieces

XOne braid grip is divided into three. Therefore, 17 braid grips are equivalent to 51

2.3 CFCC Ties

(1) Construction of CFCC Ties

The CFCC Ties shall consist of the CFCC U 5.0 ϕ . The properties of the CFCC U 5.0 ϕ and their material shall be in accordance with section 3.3 and chapter 4.

Fig. 2-5 Cross section of CFCC U 5.0 ϕ

(2) Shapes and number of CFCC Ties

The radius of inscribed circle of bent part R is planed to be 10.85 mm. Tolerances of the dimensions are +0.5", -0.0".

Fig. 2-6 Bending detail of CFCC Ties

Fig. 2-7 Turning detail of CFCC Ties

Туре	Total number of turns	Length of CFCC	Number of pieces
40' pile	114 turns	207 m (679 ft)	3
100' pile	234 turns	425 m (1,394 ft)	2

Table 2-3 Number of CFCC Ties

3 Specifications

3.1 CFCC Strands

The CFCC Strands shall comply with the specifications as shown in Table 3-1.

	Unit	Nominal	Tolerance
Construction	—	1×7	_
Diameter	mm	15.2*	_
Effective cross sectional area	mm ²	115.6 [*]	_
Linear density	g/m	221*	_
Breaking load	kN	270	270 or above
Tensile modulus	kN/mm ²	155*	_

Table 3-1 Specifications of CFCC Strands of CFCC 1 \times 7 12.5 ϕ

* Standard value

According to the ACI committee reports (ACI 440.4R-04), the recommended maximum jacking stresses for CFRP tendons are 65% of their ultimate strength, but in this project, the CFCC strands shall be stressed to 75% of their breaking loads.

3.2 Anchoring devices

While the CFCC strands are stressed, the temperature of the anchoring devices shall not exceed 50 degrees Celsius (122 degrees Fahrenheit).

3.3 CFCC Ties

The CFCC Ties shall comply with the specifications as shown in Table 3-2.

	Unit	Nominal	Tolerance	
Construction	—	U	—	
Diameter	mm	5.0*	—	
Effective cross sectional area	mm ²	15.2 [%]	—	
Linear density	g/m	30*	-	
Breaking load	kN	38	38 or above	
Tensile modulus	kN/mm ²	167*	—	

Table 3-2 Specifications of CFCC Ties of CFCC U 5.0 ϕ

* Standard value

4 Material

4.1 Carbon fiber prepregnation

The prepreg shall be PAN carbon fiber (for example: grade T700) impregnated with epoxy resin and amin hardener. Properties of the carbon fiber are shown in Table 4-1.

Properties		Unit	Value
	Filament count (Nominal)	—	12,000 or 24,000
Carbon fibor	Yield without size	tex	800 or 1,650
Carbon liber	Strand tensile strength	kN/mm ²	4.90
	Strand tensile modulus	kN/mm ²	230

Table 4-1 Properties of the carbon fiber (in the case of T700)

4.2 Wrapping fiber

The each string of CFCC shall be wrapped with the fiber. The polyester filament yarn shall be used for wrapping.

4.3 Wedges, sleeves and couplers for CFCC Strands

The wedges shall be made of steels (SCM415 according to JIS G 4053), with machining and heat treatment.

The sleeves and couplers shall be made of steels (S45CH according to JIS G 4051), with machining and heat treatment.

4.4 Polinet sheets and stainless steel meshes

The mesh sheets shall consist of polinet sheets and stainless meshes. The polinet sheets shall be made of open meshed synthetic fiber cloth with abrasive grains. (#400, Aluminium oxide) The stainless steel meshes shall be made of stainless steels (SUS304 according to JIS G 3555).

4.5 Braid grips

The braid grips shall be made of wire of stainless steels (SUS403 W1 according to JIS G 4309).

5 Test and inspection

5.1 Items and number of sampling

The test and inspection shall be subjected on the items and the numbers of sampling as shown in Table 5-1.

		Item	Number of sampling
Acceptance	Carbon fiber	Type, quantity	Each acceptance
inspection	Resin	Type, quantity	Each acceptance
	Wrapping fiber	Type, quantity	Each acceptance
	Wedge, sleeve, coupler	Type, quantity	Each acceptance
	Polinet sheet	Type, quantity	Each acceptance
	Stailess steel mesh	Type, quantity	Each acceptance
	Braid grip	Type, quantity	Each acceptance
In-process	CFCC 1 $ imes$ 7 15.2 ϕ	Diameter, pitch, linear density	Five for each lot
inspection		Tensile test	Five for each lot
	CFCC U 5.0 ϕ	Diameter, linear density	Five for each lot
	CFCC tie	Tensile test	Five for each lot
		Shape	Earch piece
		Dimension	Earch piece
		Appearance	Earch piece
Shipping	CFCC strand	Length	Every cable
inspection		Quantity	Each package
		Shipping mark	Each package
	CFCC tie	Quantity	Each package
		Shipping mark	Each package

 Table 5-1
 Items and number of sampling for test and inspection

5.2 Method of test and inspection of CFCC

Test for CFCC 1 \times 7 15.2 ϕ and CFCC U 5.0 ϕ

① Five 1.5 m long test pieces shall be cut from each lot of CFCC 1 x 7 15.2 ϕ and CFCC U 5.0 ϕ to measure the diameter, pitch, and linear density. Each terminal of test pieces shall be fixed into a socket with filling HEM (Highly expansive material) to conduct the tensile test.

2 The tensile modulus shall be calculated according to the slope of the load . The length of the gauge of the extensiometer shall be 500 mm.

3 The elongation at break shall be calculated by extrapolation of the load - elongation curve up to the breaking point.

④ The method of tensile test shall conform to JSCE-E531.

6 Packing and indication

(1) Packing detail

Pack	Description		Quantity		Dimention	Weight (kg)	
-age No.			m	pieces	(mm)	Net	Gross
1	CFCC strands	CFCC 1 $ imes$ 7 15.2 ϕ	1174	2	1802×1802×1185	520	1005
2	CFCC ties "40' pile"	CFCC U 5.0 φ	207	3	$900 \times 650 \times 735$	19	30
3	CFCC ties "100' pile"	CFCC U 5.0 ϕ	425	2	1100×650×735	26	38
4	Anchoring devices	Wedges	-	40		302	314
		Sleeves	-	40			
		Coupler	-	40			
		Mesh sheets	-	50	950 imes 850 imes 480		
		Braid grip	1.5	17			
		O ring	-	50			
		Jig	-	2			

Table 6-1 Packing List

Fig. 6-1 Detail of Package No.1

Fig. 6-2 Detail of Package No.2

Fig. 6-3 Detail of Package No.3

Fig. 6-4 Detail of Package No.4

(2) Indication

The label shall be attached on the each product. And as the following, the indication shall be attached on the each packing.

Name of Products						
Quantity						
Woight	N.W.T					
vveignt	G.W.T					
Check Mark						
Manufacturing Company :						
Tokyo Rope Mfg. Co., Ltd.						
Manufacturing Factory :						
Tokyo Rope Mfg. Co., Ltd. Gamagori CFCC Factory						

7 Documents to be submitted

Tokyo Rope shall submit the test report for CFCC. The test report shall include the following documents.

(1) Test results of CFCC

The test results of CFCC 1 \times 7 15.2 ϕ and CFCC U 5.0 ϕ shall include the following:

Diameter; Direction and pitch of lay (only CFCC $1 \times 7 \ 15.2 \phi$); Linear density; Breaking load; Tensile modulus; Elongation at break;

COUPLING DEVICE MANUAL FROM TOKYO ROPE

🔯 TOKYO ROPE MFG.CO.,LTD.

non and a

Manual for wrapping Buffer material

1 Set the wedges between the fixed tapes (Do not put on the tape).

-8-

APPENDIX B

CONCRETE MIX DESIGN

Note: The first two pages in this appendix contain compression strength test data and the concrete mix design that were provided by Gate before the piles were cast, to help in deciding to use the SCC mix design. This data is NOT on the specific batches used in the casting of the piles for this research.

The third (3rd) through sixth (6th) pages are copies of the batch tickets for the mix that was used for this research.

GATE PRECAST COMPANY

Self-Consolidating Concrete 28-Day Compression Strength Test Results

CAST DATE	TEST RESULTS
0.5.251.255	9150
05/31/13	9160/9140psi
06/03/13	8790/8960psi
06/04/13	9370/9210psi
06/05/13	0150/8770ms
10005255	900/8770pst
06/07/13	9270/9170psi
	8770
06/10/13	8330/9210psi
06/11/13	900
00/11/15	9090/8920psi
06/12/13	8890/9280nsi
	2425
06/13/13	8700/8550psi
	St+115
06/17/13	8500/8390psi
06/19/12	2145
06/18/13	8220/8070psi
06/10/12	9246
00/19/15	8570/7910psi
06/20/13	8620/8700psi

Hug = 8805

Gate Precast Company - 402 Heckscher Dr. - Jacksonville, FL 32225 - Phone (904) 757-0560 - Fax (904) 751-5435

CONCRETE	MIX	DESIGN
----------	-----	--------

ISSUED: 02/07/12

REVIEWED: B. Hunter

MIX NO .: SCC -1

CONCRETE SUPPLIER: Gate Concrete Products ADDRESS: 402 Zoo Parkway

TELEPHONE NO .: (904) 757-0860 PLANT LOCATION: Jacksonville, FL 32226

DEPT. ASSIGNED PLANT NO .: 72-055 PROJECT NO .: General

ORIGINAL ISSUE DATE: 04/07/07

CLASS CONCRETE: V (7500)

SOURCES OF MATERIALS

Coarse Aggregate_Titan/Tarmac Pennsuco_ Fine Aggregate _____ Florida Rock Industries____ Pit No. (Coarse) 87-145 Pit No. (Fine) 71-132 Cement Suwannee Air Entr. Admix AE-20 MB/BASE 1st Admixture Glenium 7700 MB/BASF 2nd Admixture Pozz NCS34 3rd Admixture Z60/BASE Fly Ash STT/Pro-Ash Cement (Ibs) 714 Coarse Aggregate (Ibs) 1375 Fine Aggregates (lbs) 1200 Air Entr. Admix (oz) 4.5 1st Admixture (oz)____ 30 2^{ed} Admixture (o2) 128 3rd Admixture (oz) 16.0 Water (gals.)_____ 36.0 Water (lbs)____ 300 126 Fly Ash (Ibs.) *Spread: 28 INCHES Air Conctent: 4.2 % Temperature: 86 deg. F. Compressive strength P. S. I. 1 Day 4300 14 Day 8120

Grade 67 S.G. (SSD) 2.430 F.M. 2-28 S.G. (SSD) 2.630 Type Crushed Limestone Type Silica Sand Spec AASHTO M-85 Type I/II Spec AASHTO M-154 Spec AASHTO M-194 Spec_AASHTO M-194 Spec ASTM C 494-99 Type B Spec ASTM C-618 Class F *SPREAD RANGE 25 TO 31 INCHES AIR CONTENT: 3.0 % TO 8.0 % UNIT WEIGHT (WET): 136.33 PCF WATER CEMENT RATIO (LBS/LB): 36 (incl. 1 gal for NC534) MAX. ALLOWABLE W/C (FIELD) : ____.38____ THEORETICAL YIELD: 27 (cu. ft.)

PRODUCER TEST DATA

28 Day 9855

132

*NOTE: Spread determined by using the Slump Cone in the inverted position.

GATE CONCRETE JACKSONVILLE FLORIDA

FDOT PLANT 72055

Truck Number: 1

Ticket No: 21989

Completed Time: 3:33:34 PM

Printed On: 7/24/2013

Operator Certificate s334420592140

Recipe Name: MIX2SCCNCR534

Recipe Description: jobs#13146/13147/13137

Created: 7/24/2013 3:33:41 PM

Recipe Class : class v [7500]

Mix Time: 121.25 Secs

W/C Ratio: 0.34		0.34			Holdback:	6	%
Slump Adjust: 0.00		0.00 Gal			Prewet:	0	%
Tot. Water Deduct: Batch Size:		0.00 Gal			Temper Water:	1.00	Gal
		6.000 Yds ³			lce:	0.0	lbs
Scale 1	Agg #1-4	Starting Wgt:	-1.3	lbs	Ending Wgt:	0.0	lbs
Scale 2	Cem #1-4	Starting Wgt:	-3.7	lbs	Ending Wgt:	0.4	lbs
Scale 3		Starting Wgt:	0.0	lbs	Ending Wgt:	0.0	lbs
				the second se			

Created By: jansen

Start Time: 3:26:27 PM

Prod. Name:	Product Source	Target:	Actual:	Final Moisture:	Deviation:	% Accp'td	Toler Over/	ance Under
67 Rock	87-145	8537.3 lbs	8467.6 lbs	3.4 %	-69.62 lbs	-0.82 0	2.0	2.0
Sand	71-132	7415.6 lbs	7302.3 lbs	2.9 %	-113.34 lbs	-1.53 0	2.0	2.0
STI FLYASH	STI	756.0 lbs	767.6 lbs	0.0 %	11.62 lbs	1.54 1	1.0	1.0
Suwannnee American	TYPE I,II	4284.0 lbs	4281.8 lbs	0.0 %	-2.25 lbs	-0.05 0	1.0	1.0
MBAE 90	BASE	48.0 Oz	48.0 Oz	0.0 %	0.00 Oz	0.00 0	3.0	3.0
Z-60	BASE	144.0 Oz	144.0 Oz	0.0 %	0.00 Oz	0.00	3.0	3.0
Glenium 7700	BASF /F	180.0 Oz	180.0 Oz	0.0 %	0.00 Oz	0.00 0	3.0	3.0
POZZ NC534	BASE	768.0 Oz	768.0 Oz	0.0 %	0.00 Oz	0.00 0	3.0	3.0
Cold Water	Not Entered	143.5 Gal	144.0 Gal	0.0 %	0.54 Gal	0.38 0	1.0	1.0

Issuance of this ticket constitutes certification that the batched concrete was produced and information recorded is in compliance with the 'Specification' and other 'Contract Document' requiremments for Structural Concrete. FDOT-GDOT-N/C

Signature on this ticket constitutes certification that the maximum specified water cementitious materials ratio was not exceeded and the batch was deliverd and placed in compliance with 'Specification' and other 'Contract Document' requirements.

Certified Signature:

133

GATE CONCRETE JACKSONVILLE FLORIDA

FDOT PLANT 72055 Ticket No: 21988

1.0

1.0

Operator	Certificate	*224420502440					Truck Numb				
Desine M	5554420592140						Truck Numb	er: 2			
Recipe N	ame: WIA2SU	JUNUR534	0407								
Recipe D	escription:	JODE#13140(13147/1	3137								
Created:	7/24/2013 3	3:28:08 PM		Create	d By:	jansen					
Recipe C	ass : class	v [7500]		Start T	lme:	3:19:17	7 PM	Compl	eted Ti	me:	3:28:01 PM
Mix Time	124.26 \$	Secs									
	W/C Rat	io: 0.34					Holdback:		6	%	
	Slump Adju	st: 0.00 Ga	ıl				Prewet:		0	%	
Tot	Water Dedu	ct: 0.00 Ga	1 3			Te	mper Water:		1.00	Gal	
2	Batch Siz	ze: 6.000 Yd	5 =				Ice:		0.0	lbs	
Scale 1	Agg #1-4	Starting Wgt:	3.8	lbs		E	nding Wgt:	0.0		lbs	
Scale 2	Cem #1-4	Starting Wgt:	4.9	lbs	_	E	nding Wgt:	0.4		lbs	
scale 3		Starting Wgt:	0.0	IDS		E	nding Wgt:	0.0		lbs	
Prod. Nar	ne: P	roduct Source	Target:	Actual:	Fin Moist	ial ture:	Deviation:	% A	ccp'td	To Ov	lerance er/Under
67 Rock		87-145	8541.4 lbs	8451.4 lbs		3.4 %	-89.97 lbs	-1.05	0	2.	0 2.0
Sand		71-132	7417.1 lbs	7393.6 lbs		2.9 %	-23.52 lbs	-0.32	0	2.	0 2.0
STI FLYAS	н	STI	756.0 lbs	762.0 lbs		0.0 %	6.00 lbs	0.79	0	1,	0 1.0
Suwannnee	American	TYPE I,II	4284.0 lbs	4278.4 lbs		0.0 %	-5.63 lbs	-0.13	0	1.	0 1.0
VIBAE 90		BASF	48.0 Oz	48.0 Oz	3lbs	0.0 %	0.00 Oz	0.00	0	3.	0 3.0
Z-60		BASF	144.0 Oz	144.0 Oz	9 lks	0.0 %	0.00 Oz	0.00	0	3.	0 3.0
Glenium 77	00	BASF /F	180.0 Oz	180.0 Oz	11-2514	0.0 %	0.00 Oz	0.00	0	3.	0 3.0
POZZ NC5	34	BASF	768.0 Oz	768.0 Oz	48 14	0.0 %	0.00 Oz	0.00	0	3.	0 3.0

Signature on this ticket constitutes certification that the maximum specified water cementitious materials ratio was not exceeded and the batch was deliverd and placed in compliance with 'Specification' and other 'Contract Document' requirements.

2 mg. off **Certified Signature:**

GATE C	GATE CONCRETE JACKSONVILLE FLORIDA					FI	DOT	PLANT 72055	Т	icket N	o: 2	1987
Printed O	n: 7/24	/2013										
Operator	Certificat	e s	334420592140					Truck Numb	er: 1			
Recipe Na	ame: MIX2	SCCN	CR534						0.61.02			
Recipe De	escription	i: jo	bs#13146/13147/1	13137								
Created:	7/24/201	3 3:20:	59 PM		Create	d By:	anser	ř				
Recipe Cl	ass : cla	ss v [75	00]		Start 1	ime:	3:10:1	6 PM	Compl	eted Ti	me:	3:20:52 PM
Mix Time:	327.91	Secs							comp	etter in	ine.	
	W/C F	Ratio:	0.34					Holdback:		6	%	
	Slump Ac	just:	0.00 Ga	al				Prewet:		0	%	
Tot.	Water De	duct:	0.00 Ga	1 3			Te	mper Water:		1.00	Gal	
The second rest	Batch	Size:	6.000 Yd	s				Ice:		0.0	lbs	
Scale 1	Agg #1-	4	Starting Wgt:	-1.3	lbs		E	nding Wgt:	8.8		lbs	
Scale 2	Cem #1	-4	Starting Wgt:	-1.5	lbs		E	nding Wgt:	13.1		lbs	
Scale 3			Starting Wgt:	0.0	lbs		E	nding Wgt:	0.0		bs	
Prod. Nan	ne:	Prod	uct Source	Target:	Actual:	Fina Moistu	re:	Deviation:	% A	ccp'td	Tol Ove	erance er/Under
67 Rock		87-1	45	8541.8 lbs	8456.4 lbs	3.	4 %	-85.45 lbs	-1.00	0	2.0	2.0
Sand		71-1	32	7416.8 lbs	7413.6 lbs	2	9 %	-3.27 lbs	-0.04	0	2.0	2.0
STI FLYASI	4	STI		756.0 lbs	752.6 lbs	0.	0 %	-3.38 lbs	-0.45	0	1.0	1.0
Suwannnee	American	TYPE	E 1,11	4284.0 lbs	4278.4 lbs	0.	0 %	-5.63 lbs	-0.13	0	1.0) 1.0
MBAE 90		BAS	c .	48.0 Oz	48.0 Oz	0.	0 %	0.00 Oz	0.00	0	3.0	3.0
Z-60		BASI	E.	144.0 Oz	144.0 Oz	0.	0 %	0.00 Oz	0.00	0	3.0	3.0
Glenium 770	00	BASE	= /F	180.0 Oz	180.0 Oz	0.	0 %	0.00 Oz	0.00	0	3.0	3.0
POZZ NC53	4	BASE	Ŧ	768.0 Oz	768.0 Oz	0.	0 %	0.00 Oz	0.00	0	3.0	3.0

Issuance of this ticket constitutes certification that the batched concrete was produced and information recorded is in compliance with the 'Specification' and other 'Contract Document' requiremments for Structural Concrete. FDOT-GDOT-N/C

143.0 Gal

0.0 %

0.55 Gal

0.39 0

1.0 1.0

142.4 Gal

Signature on this ticket constitutes certification that the maximum specified water cementitious materials ratio was not exceeded and the batch was deliverd and placed in compliance with 'Specification' and other 'Contract Document' requirements.

Certified Signature:

Not Entered

Cold Water

GATE CONCRETE JACKSONVILLE FLORIDA

FDOT PLANT 72055

Truck Number: 2

Ticket No: 21986

Completed Time: 3:12:04 PM

Printed	On:	7/24/2013

Operator Certificate s334420592140

Recipe Name: MIX2SCCNCR534

Recipe Description: jobs#13146/13147/13137

Created: 7/24/2013 3:12:11 PM

Recipe Class : class v [7500]

Mix Tir

Mix Time	126.37 Secs							
	W/C Ratio:	0.34			Holdback	6	96	
	Slump Adjust:	0.00 Gal			Prewet:	0	%	
Tot. Water Deduct: 0.00 Gal					Temper Water:	Gal		
	Batch Size:	6.000 Yds	3		lce:	0.0	lbs	
Scale 1	Agg #1-4	Starting Wgt:	-1.3	lbs	Ending Wgt:	-1.3	lbs	
Scale 2	Cem #1-4	Starting Wgt:	4.5	lbs	Ending Wgt:	12.0	lbs	1
Scale 3		Starting Wgt:	0.0	lbs	Ending Wat:	0.0	lbs	_

Created By: jansen

Start Time: 3:04:52 PM

Prod. Name:	Product Source	Target:	Actual:	Final Moisture:	Deviation:	% Accp'td	Toler Over/	rance Under
67 Rock	87-145	8548.9 lbs	8472.6 lbs	3.5 %	-76.24 lbs	-0.89 0	2.0	2.0
Sand	71-132	7416.5 lbs	7377.3 lbs	2.9 %	-39.22 lbs	-0.53 0	2.0	2.0
STI FLYASH	STI	756.0 lbs	763.5 lbs	0.0 %	7.50 lbs	0.99 0	1.0	1.0
Suwannnee American	TYPE I,II	4284.0 lbs	4277.6 lbs	0.0 %	-6.38 lbs	-0.15 0	1.0	1.0
MBAE 90	BASE	48.0 Oz	48.0 Oz	0.0 %	0.00 Oz	0.00 0	3.0	3.0
Z-60	BASE	144.0 Oz	144.0 Oz	0.0 %	0.00 Oz	0.00 0	3.0	3.0
Glenium 7700	BASF /F	180.0 Oz	180.0 Oz	0.0 %	0.00 Oz	0.00 0	3.0	3.0
POZZ NC534	BASF	768.0 Oz	768.0 Oz	0.0 %	0.00 Oz	0.00 0	3.0	3.0
Cold Water	Not Entered	141.7 Gal	142.0 Gal	0.0 %	0.26 Gal	0.19 0	1.0	1.0

Issuance of this ticket constitutes certification that the batched concrete was produced and information recorded is in compliance with the 'Specification' and other 'Contract Document' requirements for Structural Concrete. FDOT-GDOT-N/C

Signature on this ticket constitutes certification that the maximum specified water cementitious materials ratio was not exceeded and the batch was deliverd and placed in compliance with 'Specification' and other 'Contract Document' requirements.

Certified Signature:

PC CCS

APPENDIX C

STRAND TEMPLATE LAYOUT AND PILE DETAILS

Strand Template for Gate Precast Company's Casting Bed

Plans for 40-ft-long Pile. Markups (in red) are Changes Made from September 2012 to July 2013 Casting

Plans for 100-ft-long Pile. Markups (in red) are Changes Made from September 2012 to July 2013 Casting

APPENDIX D

PRESTRESS LOSS CALCULATIONS

Prestress & Elongation Calculations

PRESTRESS LOSS CALCULATIONS (per PCI Design Handbook, 6th Edition)

erties:					
22480060	psi	Initial Force in each of 16 strands =	39.45	kips	65% GUTS = (0.65)(338.6 ksi)(0.1792 in ²)
0.1792	sq. in.	Initial Prestress in each of 16 strands =	220145	psi	[(39.45 k)(1000 lb/k)/0.1792 in ²]
roperties:		Initial Force in each of 4 corner strands =	5	kips	
5370	psi (@ 24 hrs)	Initial Prestress in each of 4 corner strands =	27902	psi	[(5 k)(1000 lb/k)/0.1792 in ²]
4176976.2	psi [57000 f ^{as}]				
8640	psi (@ 28 days)				
5298241.2	psi [57000 f ^{0.5} _c]				
	rties: 22480060 0.1792 roperties: 5370 4176976.2 8640 5298241.2	erties: 22480060 psi 0.1792 sq. in. roperties: 5370 psi (@ 24 hrs) 4176976.2 psi [57000 f [*] a ⁰⁵] 8640 psi (@ 28 days) 5298241.2 psi [57000 f ^{**} a ⁰⁵]	erties:22480060psiInitial Force in each of 16 strands =0.1792sq. in.Initial Prestress in each of 16 strands =roperties:Initial Force in each of 4 corner strands =5370psi (@ 24 hrs)Initial Prestress in each of 4 corner strands =4176976.2psi [57000 $f_a^{0.5}$]8640psi (@ 28 days)5298241.2psi [57000 $f_e^{0.5}$]	erties:22480060 psiInitial Force in each of 16 strands =39.450.1792 sq. in.Initial Prestress in each of 16 strands =220145roperties:Initial Force in each of 4 corner strands =55370 psi (@ 24 hrs)Initial Prestress in each of 4 corner strands =279024176976.2 psi [57000 $f_{g}^{0.5}$]8640 psi (@ 28 days)5298241.2 psi [57000 $f_{g}^{0.5}$]	erties:22480060 psiInitial Force in each of 16 strands =39.45 kips0.1792 sq. in.Initial Prestress in each of 16 strands =220145 psiroperties:Initial Force in each of 4 corner strands =5 kips5370 psi (@ 24 hrs)Initial Prestress in each of 4 corner strands =27902 psi4176976.2 psi [57000 $f_{a}^{0.5}$]8640 psi (@ 28 days)5298241.2 psi [57000 $f_{c}^{0.5}$]

1) Elastic Shortening

 $\mathrm{ES}=\mathrm{K_{es}}^{*}\mathrm{E_{ps}}^{*}\mathrm{f_{dir}}/\mathrm{E_{si}}$

where

K _{es} =	1.0 for pretensioned members
E _{ps} =	Modulus of Elasticity of prestressing material
$E_{\alpha} =$	Modulus of Elasticity of concrete at time prestress is applied
$f_{dr} =$	Net compressive stress in concrete at C.G. of prestressing force immediately after prestress is applied to the concrete
f _{or} =	$K_{dr}[(P_1/A_g) + (P_1e^2/I_g)] - M_ge/I_g$

where

K _{cir} =	0.9 for pretensioned members
P. =	Initial prestress force (after anchorage seating loss)
e =	Eccentricity of the C.G. of tendons with respect to the C.G. of the concrete
A _c =	Area of gross concrete section
$t_e =$	Moment of inertia of gross concrete section
$M_g =$	Moment due to dead weight of prestressed member and any other permanent loads in place at the time of prestressing

Therefore,

for 16	stronds:		for 4 st	rands:		
K _{es} =	1		K _{es} =	1		
K _{ear} =	0.9		$\kappa_{dr} =$	0.9		
$P_i =$	39.45	kips per strand	$\mathbf{P}_i =$	5	kips per st	rand
e =	0	in.	e =	0	in.	
A _c =	576	sq. in. (24 in. x 24 in.)	A _c =	576	sq. in.	(24 in. x 24 in.)
l _e =	27648	in ⁴	t _e =	27648	in ⁴	
M _e =	0	No eccentricity	M _e =	0	No eccent	ricity
$\mathbf{f}_{\mathrm{cir}} =$	986.2.5	psi (for 16 strands)	f _{or} =	31.25	psi (for 4 s	trands)
ES =	5307.9	psi (for 16 strands)	ES =	168.2	psi (for 4 s	trands)
Therefore	, ES Losses =	5476.1 psi (for 20 strands)				

2) Creep of Concrete

 $\mathsf{CR} = \mathsf{K}_{\mathrm{cr}} \left(\mathsf{E}_{\mathrm{ps}} / \mathsf{E}_{\mathrm{c}}\right) \left(\mathsf{f}_{\mathrm{dr}} {\cdot} \mathsf{f}_{\mathrm{cds}}\right)$

where				
K _{er} =	2.0 normal	weight concre	ete	
	1.6 sand lip	ghtweight onc	rete	
f _{ods} =	Stress in co	oncrete at C.G.	of the p	restressing force due to all superimposed permanent loads
	that are ap	plied to the m	ember a	fter it has been prestressed
f _{ats} =	$M_{\rm sd}{}^{*}e/l_{g}$			
Therefore,				
K _{er} =	2			
f _{ots} =	0	No eccentric	ity	
f _{at} =	1017.5	psi (for 20 st	rands)	
Therefore,	CR Losses =	8634.4	psi	

3) Shrinkage

SH = (8.2x10⁻⁶) K_{ch} E_{ps} (1 - 0.06V/S) (100 - RH)

where K_{sh} = 1.0 for pretensioned members V/S =Volume-to-Surface ratio R.H. = Average ambient relative humidity Therefore, K_{th} = 1 E₂₀ = 22480060 psi V = 276480 in³ [(240) (24) (480)] 47232 sq. in. S = [(24)(480)(4) + (24)(24)(2)] V/S =5.8536585 R.H. = 75%

Therefore, SH Losses = 2989.8

4) Relaxation

 $RE = [K_{re} - J(SH+CR+ES)] C$

 where K_{re} and J are taken from PCI Table 4.7.3.1

 and C is taken from PCI Table 4.7.3.1 or calculated using Eqs. 4.7.3.8 - 4.7.3.12.

 Eqs. 4.7.3.11 & 4.7.3.12 are applicable.

 $C = (f_{p_i}/f_{p_0})/0.21) (((f_{p_i}/f_{p_0})/0.9)-0.55)$ when $f_{p_i}/f_{p_0} > 0.54$
 $C = (f_{p_i}/f_{p_0})/4.25$ when $f_{p_i}/f_{p_0} < 0.54$

psi

Therefore,

Therefore,

for 16 stronds: for 4 stronds: 27902 psi $f_{pi} =$ 220145 psi f_{pi} = 0.082 f_,/f_= 0.65 $f_{p}/f_{pu} =$ 0.533 0.0194 C = C = RE = 2301.2 psi RE = 83.67 psi Therefore, RE Losses = 2301.2 psi for each of 16 strands

83.67 psi for each of 4 strands

Total Prestressing Losses = ES + CR + SH + RE

19401	psi (for each of 16 strands)
17184	psi (for each of 4 corner strands)
8.81	% (for each of 16 strands)
61.59	% (for each of 4 corner strands)
	19401 17184 8.81 61.59

Effective stress in strands after losses = Initial Prestress - Total Losses

Effective Stress =	200744	psi (for each of 16 strands)
Effective Stress =	10718	psi (for each of 4 corner strands)

Force in each strand after losses = Effective Stress x Astand

Force in strand =	35.97	kips (for each of 16 strands)
Force in strand =	1.92	kips (for each of 4 strands)

Compressive stress in pile = [16(Force in strand) + 4(Force in strand)] / Ag

Compression in pile = 1.01 ksi

APPENDIX E

PILE DRIVING TESTS AND REPORTS

PILE TEST SITE: SOIL BORING DATA AND PLAN & ELEVATION SHEET

·												SED FOR CONSTRUCTION	CCD a 4 2012	3EF 04 2014	partment of Transportation uses Design Office - District 5		ALLE J. Para	MAT	Amere shall	Mal ENGINET	AUMANNIN	E ND'S. 790206 & 790207 DEER WILDLIFE CROSSING	3LE ARE, DAG. 400.	44 TO EAST OF 1-95 B3-13
		PILE CUT-DFF ELEVATIDNS	EE TABLE BELOW	EE TABLE BELOW	EE TABLE BELOW							RELEAU			Strott		(Tim	RROFE	10000		BRIDG 100 (I-4) DVER	PILE DATA TAE	VIDENING FROM SR
		RESIZIANCE	.65 S	.65 S	.65 S												W ECIFY		VIDED			SR 4		1-4
		LONG TERM SCOUR ELEVATION (FT.)	N/A O	N/A 0	N/A 0											ICE	NED BELON	ANCE	ANCE PRO EVATION			3E 3 -	nut.	SR-400
		100-YEAR SCOUR ELEVATION (FT.)	N/A	N/A	N/A											VG RESISTAN	st be obtai out of the	TION RESIST	JETTING ELL	YEAR	FOR	BRIDO	ETATION SHEET	AL PROJECT 10 PROJE 4-1-52-01
	N CRITERIA	NET SCOUR RESISTANCE. (TONS)	NIA	N/A	N/A	ACCORDANCE TABILITY.										IOMINAL BEARII	ITY THAT MUS RESIST PULLU DN CAPACITY).	TIC SIDE FRIC	TIC SIDE FRIC REFORMED OR	E TO THE 100	ED IN DESIGN		LATE OF FLORIDA	0LUSIA 40846
	DESIG	TDTAL SCDUR RESISTANCE (TDNS)	N/A	N/A	N/A	ERMINED IN ICATIONS. LATERAL S										N DRAG S N	EVATION CAPAC EVATION TO UIRES TENSI	TIMATE STA RABLE SOIL.	TIMATE STA REQUIRED P N.	r scour pu	scour us		DEPARTME	400 V
		DDWN DRAG (TDNS)	N/A	N/A	N/A	E DET SPECIF D FOR										MOO -	E FRIC JUR EL N REO(HE UL SCOUF	HE UL H THE EVATIO	IO NOI.	ION DI NOTING		RANN BY: NS 08-12 ECKED BY: 41 08-12	SI CRED BY+ NL 08-12 IECRED BY+ XL 08-12
ABLE		FACTORED DESIGN LOAD (TONS)	160	245	160	V SHALL B OF THE S V REOUIRE										ISTANCE +	IMATE SIDI YEAR SCC HEN DESIGI	AATE OF T D BY THE	AATE OF T SOIL FROM SCOUR ELE	EO ELEVAT VENT.	EVENT LO		T 111 111 111	7186 7186
LE DATA 1		REOUIRED PREFORM ELEVATION (FT.)	N/A	N/A	N/A	IP ELEVATION 10N 455-5.8 1P ELEVATION										SCOUR RES.	ОМГХ МН 111Е 100 111Е ЛГТ	- AN ESTIN PROVIDEL	- AN ESTIN BY THE TO THE	- ESTIMATE STORM E	- ESTIMATE EXTREME		DANIEL J. RAYMA P.E. Lloense No. 63 0 N. Kendall Drive, Su	Miami, Florida 3310 Phone: (305) 670-235 Fax (305) 670-235 rt.of Authorization No.
IId		REOUIRED JET ELEVATION (FT.)	N/A	N/A	N/A	<pre># MINIMUM TI WITH SECT # MINIMUM TI</pre>		Q				ſ	2			LOAD + NET Ø	ĈĒ	STANCE	ANCE	LEVATION	ELEVATION		130	olicering _{ce}
		TEST PILE LENGTH (F1.)	115	120	115	τ Ν		E 5 PILE	- 9.1	1.5 51.7	- 9.1	- 9.6	0.9 50.	- 9.6		D DESIGN	RESISTAN	cour resi	UR RESIST	R SCOUR E	RM SCOUR			5
	CRITERIA	MINIMUM TIP LEVATION (FT.)	*	+ * E -	*		VS TABLE	PILE 4 PIL	51.3 5	51.3 5	51.3 5	50.8 5	51.1 50	50.8 51		FACTORE	TENSION	TDTAL S	NET SCD	100-YEA	T DNC 1E		PILOS	
	ALLATION	TENSIDN SISTANCE (TDNS)	N/A	N/A	N/A		ELEVATIO	2 PILE 3	51.1	51.1	51.1	51.1	51.3	51.1									DÉ 5CR	
	INST/	IINAL RING TANCE NS)	47	77	47		JT-OFF	I PILE	5 50.8	6 50.8	5 50.8	6 51.4	7 51.5	6 51.4									BY	
		RESIS	2	M	2		THE CI	PILE	-1 50.	2 50.	.3 50.	-1 51.	2 51.	3 51.									I O N S	
		PILL	24	24	24			ATION	ENT 3-	NT 3-	ENT 3-	ENT 3-	NT 3-	ENT 3-									S	
		PIER OR NUMBER	BENT 3-1	BENT 3-2	BENT 3-3			7 DC'	END B	INT. BE	END BL	END BL	INT. BE	END BE									R E	
		BEN}	END	INT.	END				פו מאם	0815. 0815.	3 <i>M</i>	ЭS ann	081S	5 5									DE SCRIPT	
																							DATE BY	

PILE DRIVING DATA FOR PRODUCTION PILES NEAR TEST PILES 1 AND 2 (FOR COMPARISON PURPOSES)

L4 OVER DEER CROSSING - EB 3-1, P5 EE 52.19, C 53.19, P5 EE 52.19, C 53.19, P5 AR: 675.00 km² S.11.00 S.11.6, 053.14 S.11.6,	Nodars Case M	se & Associat Method & iCA	es Inc P® Resuli	ts					PDI	PLOT Ver	. 2012.2 - P	Pag rinted: 3-0	e 1 of 2 cl-2013
AFR. ST 200 bm² SP: 1.050 dm3	I-4 OV OP: M	ER DEER CR	ROSSING	- EB 3-1, P	5						RE 52.18, (Test (CE 51.6 NB date: 24-Se	R 494k p-2013
Characteristics Comparations Stress at Bottom FXA: Max Case Method Capacity CP-0.4) CSX: Max Massred Comp. Stress RXI: Max Case Method Capacity Max Case Method Capacity<	AR: LE:	576.00 in^2 111.00 ft										SP: 0.1 EM: 6,3	50 k/ft3 92 ksi
STK: O.E. Dissel Hammer Stroke STK: O.E. Dissel Hammer Stroke BL# dept STK R.X RM RX RX <thrx< th=""> RX RX <thrx< <="" td=""><td>CSB: CSX: TSX: EMX:</td><td>Compression Max Measure Tension Stres Max Transfer</td><td>Stress at ed Compr. ss Maximu red Energ</td><td>Bottom Stress Im Iy</td><td></td><td></td><td></td><td>Frankersen</td><td>RX4: RMX RX6: BTA:</td><td>Max Ca Max Ca Max Ca BETA I</td><td>ase Method ase Method ase Method ntegrity Fac</td><td>Capacity (Capacity Capacity Capacity (tor</td><td>JC=0.4) JC=0.6)</td></thrx<></thrx<>	CSB: CSX: TSX: EMX:	Compression Max Measure Tension Stres Max Transfer	Stress at ed Compr. ss Maximu red Energ	Bottom Stress Im Iy				Frankersen	RX4: RMX RX6: BTA:	Max Ca Max Ca Max Ca BETA I	ase Method ase Method ase Method ntegrity Fac	Capacity (Capacity Capacity Capacity (tor	JC=0.4) JC=0.6)
end 6.8.1 EA 6.4.1 6.4.1 6.4.4 410 392 394 400 9 45.00 36 AV36 1.0 1.8 0.7 20.4 6.44 410 392 384 100 86 47.00 41 AV41 1.0 1.8 0.7 20.4 6.41 413 396 384 100 129 48.00 40 AV40 1.0 1.8 0.6 19.6 6.31 4115 401 390 100 1215 50.00 46 AV46 1.0 1.8 0.6 19.4 6.35 448 430 418 100 310 52.00 47 AV47 1.0 1.7 0.5 19.5 6.43 463 436 422 100 414 44.00 51 XV51 1.1 1.8 0.5 20.5 6.60 476 438 422 100 55.0	STK:	O.E. Diesel H	lammer Si		CSB	CSX	TOY	EMY	STK	DV/	PMY	PY6	BTA
9 45.00 9 AV9 1.0 1.8 0.7 20.4 6.44 410 322 384 100 45 46.00 36 AV36 1.0 1.8 0.7 20.4 6.41 413 396 384 100 169 48.00 43 AV43 1.0 1.8 0.6 19.6 6.31 415 401 390 100 215 50.00 46 AV46 1.0 1.8 0.6 19.4 6.35 438 424 413 100 263 51.00 46 AV47 1.0 1.7 0.5 19.1 6.35 448 430 423 410 310 52.00 63 AV47 1.1 1.8 0.5 20.0 65.3 476 441 420 100 65.00 45 AV47 1.1 2.0 0.7 24.4 7.19 487 443 413 388	end	ft	bl/ft	1111	ksi	ksi	ksi	k-ft	ft	kips	kips	kips	(%)
45 46.00 36 A/36 1.0 1.8 0.7 20.4 6.43 410 385 387 100 129 48.00 43 A/43 1.0 1.8 0.6 19.6 6.31 415 401 390 100 129 48.00 43 A/43 1.0 1.8 0.6 19.3 6.28 424 409 397 100 215 50.00 48 A/44 1.0 1.7 0.5 19.1 6.35 438 424 413 100 363 50.00 53 A/47 1.0 1.7 0.5 19.1 6.52 474 444 427 100 414 54.00 51 A/45 1.1 1.8 0.5 20.5 6.60 476 441 420 100 55 57.00 42 A/42 1.1 2.0 0.7 24.4 7.21 477 453 448 100	9	45.00	9	AV9	1.0	1.8	0.7	20.4	6.44	410	392	384	100
86 47.00 41 AVA1 1.0 1.8 0.7 20.4 6.41 413 386 384 100 129 48.00 40 AV40 1.0 1.8 0.6 19.3 6.28 415 401 397 100 2615 51.00 46 AV46 1.0 1.8 0.6 19.4 6.35 438 424 413 100 263 51.00 47 AV47 1.0 1.7 0.5 19.5 6.43 448 430 418 100 310 52.00 56 AV55 1.1 1.8 0.5 20.5 6.60 454 444 427 100 515 56.00 45 AV45 1.1 2.0 0.7 24.7 7.21 477 463 448 100 550 57.00 42 AV47 1.1 2.0 0.7 24.7 7.23 447 433 100 50	45	46.00	36	AV36	1.0	1.8	0.7	20.4	6.43	410	395	387	100
129 48.00 43 AV43 1.0 1.8 0.6 19.6 6.31 415 401 390 100 169 45.00 40 AV40 1.0 1.8 0.6 19.3 6.28 424 409 397 100 263 51.00 46 AV46 1.0 1.7 0.5 19.1 6.35 448 420 413 100 363 53.00 53 AV47 1.0 1.7 0.5 19.1 6.43 463 436 423 100 444 54.00 51 AV51 1.1 1.8 0.5 20.0 6.53 476 441 420 100 55.00 56 AV55 1.1 1.8 0.5 20.5 6.60 476 448 425 100 557 57.00 42 AV42 1.1 2.0 0.7 24.4 7.21 477 463 448 100 660 458.00 47 AV47 1.1 2.0 0.7 24.4 7.21 477 <td>86</td> <td>47.00</td> <td>41</td> <td>AV41</td> <td>1.0</td> <td>1.8</td> <td>0.7</td> <td>20.4</td> <td>6.41</td> <td>413</td> <td>396</td> <td>384</td> <td>100</td>	86	47.00	41	AV41	1.0	1.8	0.7	20.4	6.41	413	396	384	100
169 480.0 40 AV40 1.0 1.8 0.6 19.3 6.28 424 409 397 100 215 50.00 46 AV46 1.0 1.7 0.5 19.1 6.35 448 424 413 100 363 53.00 53 AV43 1.0 1.7 0.5 19.5 6.43 463 436 424 410 100 414 64.00 51 AV47 1.1 1.8 0.5 20.0 6.53 476 441 420 100 470 55.00 56 AV45 1.1 2.0 0.7 24.4 7.19 467 476 441 420 100 561 56.00 45 AV42 1.1 2.0 0.7 24.4 7.21 477 463 448 100 660 58.00 46 AV42 1.1 2.0 0.7 24.4 7.23 473 449 433 100 650 59.00 46 AV43 1.1 2.1	129	48.00	43	AV43	1.0	1.8	0.6	19.6	6.31	415	401	390	100
215 50.00 46 AV46 1.0 1.8 0.6 19.4 6.35 438 424 413 100 263 51.00 46 AV46 1.0 1.7 0.5 19.1 6.35 448 430 418 100 363 53.00 53 AV43 1.1 1.8 0.5 19.9 6.52 474 444 427 100 414 54.00 51 AV51 1.1 1.8 0.5 20.0 6.53 476 434 425 100 515 56.00 45 AV45 1.1 2.0 0.7 24.2 7.19 487 475 463 100 650 59.00 46 AV47 1.1 2.0 0.7 24.4 7.23 461 413 398 100 60.0 43 AV43 1.1 2.1 0.8 26.7 7.39 451 413 390 100 60.0 43 AV44 1.0 2.2 0.9 26.0 7.49 424 391	169	49.00	40	AV40	1.0	1.8	0.6	19.3	6.28	424	409	397	100
263 51.00 48 AV48 1.0 1.7 0.5 19.1 6.35 448 430 418 100 310 52.00 47 AV47 1.0 1.7 0.5 19.5 6.43 463 436 423 100 414 54.00 51 AV51 1.1 1.8 0.5 20.0 6.53 476 444 427 100 515 56.00 45 AV45 1.1 2.0 0.7 24.2 7.19 487 475 463 100 650 59.00 46 AV47 1.1 2.0 0.7 24.7 7.23 473 449 433 100 650 59.00 46 AV47 1.1 2.1 0.8 25.9 7.36 468 434 419 100 653 60.00 43 AV43 1.0 2.2 0.9 26.9 7.40 437 394 379	215	50.00	46	AV46	1.0	1.8	0,6	19.4	6.35	438	424	413	100
310 52.00 47 AV47 1.0 1.7 0.5 19.5 6.43 463 436 423 100 363 53.00 53 AV53 1.1 1.8 0.5 19.9 6.52 474 444 427 100 470 55.00 56 AV51 1.1 1.8 0.5 20.5 6.60 476 438 425 100 575 57.00 42 AV42 1.1 2.0 0.7 24.7 7.23 473 449 433 100 660 59.00 46 AV47 1.1 2.0 0.7 24.7 7.23 473 449 433 100 693 60.00 43 AV43 1.0 2.2 0.9 28.0 7.40 437 380 100 732 61.0 39 AV34 1.0 2.2 0.9 28.0 7.49 424 381 388 100	263	51.00	48	AV48	1.0	1.7	0.5	19.1	6.35	448	430	418	100
363 5.3 AV53 1.1 1.8 0.5 19.9 6.52 474 444 427 100 414 54.00 51 AV51 1.1 1.8 0.5 20.0 6.63 476 441 420 100 470 55.00 56 AV56 1.1 1.8 0.5 20.0 6.63 476 441 420 100 557 57.00 42 AV42 1.1 2.0 0.7 24.4 7.19 487 443 419 100 660 59.00 46 AV47 1.1 2.0 0.7 24.7 7.23 473 449 433 100 650 59.00 46 AV43 1.1 2.1 0.8 25.9 7.30 451 413 398 100 650 50.00 473 AV33 1.0 2.2 0.9 2.6.0 7.40 437 340 100 650 62.00 39 AV33 1.0 2.1 0.8 26.1 7.10 <td>310</td> <td>52.00</td> <td>47</td> <td>AV47</td> <td>1.0</td> <td>1.7</td> <td>0.5</td> <td>19.5</td> <td>6.43</td> <td>463</td> <td>436</td> <td>423</td> <td>100</td>	310	52.00	47	AV47	1.0	1.7	0.5	19.5	6.43	463	436	423	100
1414 54.00 51 AV51 1.1 1.8 0.5 20.0 6.53 476 441 420 100 470 55.00 56 AV56 1.1 1.8 0.5 20.5 6.60 476 438 425 100 557 57.00 42 AV42 1.1 2.0 0.7 24.4 7.21 477 463 448 100 660 59.00 46 AV46 1.1 2.0 0.7 24.7 7.23 473 449 433 100 673 60.00 43 AV43 1.1 2.1 0.8 25.9 7.36 468 434 419 100 673 61.00 39 AV33 1.0 2.2 0.9 26.67 7.39 451 413 398 100 732 61.00 34 AV43 1.0 2.2 0.9 26.9 7.40 424 391 360 100 867 64.00 45 AV42 0.9 2.1 0.8 <td>363</td> <td>53.00</td> <td>53</td> <td>AV53</td> <td>1.1</td> <td>1.8</td> <td>0.5</td> <td>19.9</td> <td>6.52</td> <td>474</td> <td>444</td> <td>427</td> <td>100</td>	363	53.00	53	AV53	1.1	1.8	0.5	19.9	6.52	474	444	427	100
470 55.00 56 AV66 1.1 1.8 0.5 20.5 6.60 476 438 425 100 515 56.00 45 AV45 1.1 2.0 0.7 24.2 7.19 487 475 463 448 100 604 58.00 47 AV47 1.1 2.0 0.7 24.7 7.21 473 449 433 100 693 60.00 43 AV43 1.1 2.1 0.8 25.9 7.36 468 434 419 100 693 60.00 43 AV43 1.0 2.2 0.9 26.0 7.49 424 391 380 100 756 62.00 34 AV34 1.0 2.2 0.9 26.0 7.49 424 391 380 100 805 63.00 39 AV39 0.9 2.1 0.8 26.1 7.12 440 402 395 100 942 66.00 45 AV45 1.0 2.1	414	54.00	51	AV51	1.1	1.8	0.5	20.0	6.53	476	441	420	100
515 56.00 45 AV45 1.1 2.0 0.7 24.2 7.19 487 475 463 100 557 57.00 42 AV42 1.1 2.0 0.7 24.4 7.21 477 463 448 100 604 58.00 47 AV47 1.1 2.0 0.7 24.7 7.23 473 449 433 100 650 59.00 46 AV43 1.1 2.1 0.9 26.9 7.40 437 394 379 100 633 60.00 43 AV43 1.0 2.2 0.9 28.0 7.49 424 391 360 100 645 62.00 34 AV34 1.0 2.2 0.9 28.0 7.49 424 360 100 847 64.00 42 AV42 0.9 2.1 0.8 24.1 6.62 407 374 360 100 897 65.00 50 AV50 1.0 2.1 0.8 26.1	470	55.00	56	AV56	1.1	1.8	0.5	20.5	6.60	476	438	425	100
557 57.00 42 AV42 1.1 2.0 0.7 24.4 7.21 477 463 448 100 604 58.00 47 AV47 1.1 2.0 0.7 24.7 7.23 473 449 433 100 650 59.00 46 AV46 1.1 2.1 0.8 25.9 7.36 463 434 419 100 676 62.00 34 AV43 1.0 2.2 0.9 26.0 7.40 437 394 379 100 766 62.00 34 AV34 1.0 2.2 0.9 28.0 7.49 424 391 386 100 805 63.00 39 AV39 0.9 2.1 0.8 24.1 6.6 415 381 386 100 847 64.00 42 AV45 1.0 2.1 0.8 26.1 7.12 440 402 395 100 986 67.00 41 AV44 0.9 2.2 0.9	515	56.00	45	AV45	1.1	2.0	0.7	24.2	7.19	487	475	463	100
664 68.00 47 AV47 1.1 2.0 0.7 24.7 7.23 473 449 433 100 660 59.00 46 AV46 1.1 2.1 0.8 25.9 7.36 468 443 419 100 693 60.00 43 AV43 1.1 2.1 0.9 26.9 7.40 437 394 398 100 732 61.00 39 AV39 1.0 2.2 0.9 28.0 7.49 424 391 380 100 805 63.00 39 AV39 0.9 2.1 0.8 24.1 6.66 415 381 388 100 897 65.00 50 AV45 1.0 2.1 0.8 26.1 7.12 440 402 395 100 942 66.0 45 AV44 0.9 2.1 0.8 26.1 7.12 440 402 391 388 100 1027 68.00 41 AV41 0.8 2.2	557	57.00	42	AV42	1.1	2.0	0.7	24.4	7.21	477	463	448	100
650 59.00 46 AV46 1.1 2.1 0.8 25.9 7.36 468 434 419 100 663 60.00 43 AV43 1.1 2.1 0.9 26.7 7.39 451 413 398 100 732 61.00 39 AV39 1.0 2.2 0.9 26.9 7.40 437 394 379 100 766 62.00 34 AV39 0.9 2.1 0.8 24.2 6.92 407 374 360 100 847 64.00 42 AV42 0.9 2.1 0.8 26.1 7.12 440 402 395 100 986 67.00 44 AV44 0.9 2.1 0.9 26.0 7.09 418 392 391 100 1027 68.00 41 AV41 0.8 2.2 1.0 26.5 7.23 391 354 336	604	58.00	47	AV47	1,1	2.0	0.7	24.7	7.23	473	449	433	100
693 60.00 43 AV43 1.1 2.1 0.9 26.7 7.39 451 413 398 100 732 61.00 39 AV39 1.0 2.2 0.9 26.9 7.40 437 394 379 100 766 62.00 34 AV34 1.0 2.2 0.9 28.0 7.40 437 394 380 100 805 63.00 39 AV39 0.9 2.1 0.8 24.2 6.92 407 374 366 100 847 64.00 42 AV42 0.9 2.1 0.8 24.1 6.86 415 381 388 100 942 66.00 45 AV45 1.0 2.1 0.8 26.1 7.12 440 402 395 100 1027 68.00 41 AV41 0.9 2.2 0.9 26.5 7.23 411 388 386 100 1111 70.00 41 AV41 0.8 2.2 1.0 <td>650</td> <td>59.00</td> <td>46</td> <td>AV46</td> <td>1.1</td> <td>2.1</td> <td>0.8</td> <td>25.9</td> <td>7.36</td> <td>468</td> <td>434</td> <td>419</td> <td>100</td>	650	59.00	46	AV46	1.1	2.1	0.8	25.9	7.36	468	434	419	100
732 61.00 39 AV39 1.0 2.2 0.9 26.9 7.40 437 394 379 100 766 62.00 34 AV34 1.0 2.2 0.9 28.0 7.49 424 391 380 100 805 63.00 39 AV39 0.9 2.1 0.8 24.2 6.92 407 374 3660 100 847 64.00 42 AV42 0.9 2.1 0.8 26.1 7.01 451 411 382 100 942 66.00 45 AV45 1.0 2.1 0.9 26.0 7.09 418 392 391 100 1027 68.00 41 AV41 0.9 2.2 0.9 26.8 7.23 419 388 386 100 1111 70.00 41 AV41 0.8 2.2 1.0 27.5 7.33 311 322 100	693	60.00	43	AV43	1.1	2.1	0.9	26.7	7.39	451	413	398	100
766 62.00 34 AV34 1.0 2.2 0.9 28.0 7.49 424 391 380 100 805 63.00 39 AV39 0.9 2.1 0.8 24.2 6.92 407 374 360 100 847 64.00 42 AV42 0.9 2.1 0.8 24.1 6.86 415 381 368 100 942 66.00 45 AV45 1.0 2.1 0.8 26.0 7.01 451 411 382 391 100 942 66.00 44 AV44 0.9 2.1 0.9 26.0 7.09 418 392 391 100 1027 68.00 41 AV41 0.8 2.2 0.9 26.8 7.23 419 388 386 100 1111 70.00 41 AV41 0.8 2.2 1.0 27.5 7.35 377 388	732	61.00	39	AV39	1.0	2.2	0.9	26.9	7.40	437	394	379	100
B05 63.00 39 AV39 0.9 2.1 0.8 24.2 6.92 407 374 360 100 847 64.00 42 AV42 0.9 2.1 0.8 24.1 6.86 415 381 368 100 847 65.00 50 AV50 1.0 2.1 0.8 25.2 7.01 451 411 382 100 942 66.00 45 AV45 1.0 2.1 0.8 26.0 7.09 418 392 391 100 1027 68.00 41 AV41 0.9 2.2 0.9 26.8 7.20 421 391 388 100 1111 70.00 41 AV41 0.8 2.2 1.0 27.5 7.35 377 338 309 100 1147 71.00 36 AV36 0.8 2.2 1.0 27.5 7.35 377 338 309	766	62.00	34	AV34	1.0	2.2	0.9	28.0	7.49	424	391	380	100
847 64.00 42 AV42 0.9 2.1 0.8 24.1 6.86 415 381 368 100 897 65.00 50 AV50 1.0 2.1 0.8 25.2 7.01 451 411 382 100 942 66.00 45 AV45 1.0 2.1 0.8 26.1 7.12 440 402 395 100 986 67.00 44 AV44 0.9 2.1 0.9 26.0 7.09 418 392 391 100 1027 68.00 41 AV41 0.8 2.2 0.9 26.8 7.23 419 388 386 100 1111 70.00 41 AV41 0.8 2.2 1.0 27.5 7.39 381 341 322 100 1147 71.00 36 AV36 0.8 2.2 1.0 27.5 7.35 377 38 309	805	63.00	39	AV39	0.9	2.1	0.8	24.2	6.92	407	374	360	100
897 65.00 50 AV50 1.0 2.1 0.8 25.2 7.01 451 411 382 100 942 66.00 45 AV45 1.0 2.1 0.8 26.1 7.12 440 402 395 100 986 67.00 44 AV44 0.9 2.1 0.9 26.0 7.09 418 392 391 100 1070 69.00 43 AV43 0.8 2.2 0.9 26.8 7.23 419 388 366 100 1111 70.00 41 AV41 0.8 2.2 1.0 26.5 7.23 391 354 336 100 1147 71.00 36 AV36 0.8 2.2 1.0 27.5 7.35 377 338 309 100 1265 74.00 39 AV39 0.8 2.2 1.0 27.5 7.34 380 336 315	847	64.00	42	AV42	0.9	2.1	0.8	24.1	6.86	415	381	368	100
942 66.00 45 AV45 1.0 2.1 0.8 26.1 7.12 440 402 395 100 986 67.00 44 AV44 0.9 2.1 0.9 26.0 7.09 418 392 391 100 1027 68.00 41 AV41 0.9 2.2 0.9 26.9 7.20 421 391 389 100 1070 69.00 43 AV43 0.8 2.2 0.9 26.8 7.23 419 388 386 100 1111 70.00 41 AV41 0.8 2.2 1.0 26.5 7.23 391 354 336 100 1147 71.00 36 AV36 0.8 2.2 1.0 27.5 7.35 377 338 309 100 1226 73.00 40 AV40 0.8 2.3 1.0 27.8 7.38 376 337 306 100 1265 74.00 39 AV40 0.8 2.3 1.0	897	65.00	50	AV50	1.0	2.1	0.8	25.2	7.01	451	411	382	100
986 67.00 44 AV44 0.9 2.1 0.9 26.0 7.09 418 392 391 100 1027 68.00 41 AV41 0.9 2.2 0.9 26.9 7.20 421 391 389 100 1070 69.00 43 AV43 0.8 2.2 0.9 26.8 7.23 419 388 386 100 1111 70.00 41 AV41 0.8 2.2 1.0 26.5 7.23 391 354 336 100 1147 71.00 36 AV36 0.8 2.2 1.0 27.5 7.35 377 338 309 100 1226 73.00 40 AV40 0.8 2.3 1.0 27.8 7.38 376 337 306 100 1265 74.00 39 AV49 0.8 2.3 1.0 27.9 7.38 370 325 304 <td>942</td> <td>66.00</td> <td>45</td> <td>AV45</td> <td>1.0</td> <td>2.1</td> <td>0.8</td> <td>26.1</td> <td>7.12</td> <td>440</td> <td>402</td> <td>395</td> <td>100</td>	942	66.00	45	AV45	1.0	2.1	0.8	26.1	7.12	440	402	395	100
1027 68.00 41 AV41 0.9 2.2 0.9 26.9 7.20 421 391 389 100 1070 69.00 43 AV43 0.8 2.2 0.9 26.8 7.23 419 388 386 100 1111 70.00 41 AV41 0.8 2.2 1.0 26.5 7.23 391 354 336 100 1147 71.00 36 AV36 0.8 2.2 1.1 27.8 7.39 381 341 322 100 1265 74.00 39 AV39 0.8 2.2 1.0 27.5 7.35 377 338 309 100 1265 74.00 39 AV40 0.8 2.3 1.0 27.2 7.29 367 327 293 100 1305 75.00 40 AV40 0.8 2.3 1.0 27.9 7.38 370 325 304 100 1343 76.00 38 AV39 1.1 2.3 0	986	67.00	44	AV44	0.9	2.1	0.9	26.0	7.09	418	392	391	100
1070 69.00 43 AV43 0.8 2.2 0.9 26.8 7.23 419 388 386 100 1111 70.00 41 AV41 0.8 2.2 1.0 26.5 7.23 391 354 336 100 1147 71.00 36 AV36 0.8 2.2 1.1 27.8 7.39 381 341 322 100 1186 72.00 39 AV39 0.8 2.2 1.0 27.5 7.35 377 338 309 100 1226 73.00 40 AV40 0.8 2.3 1.0 27.8 7.38 376 337 306 100 12265 74.00 39 AV39 0.8 2.3 1.0 27.2 7.29 367 327 293 100 1305 75.00 40 AV40 0.8 2.3 1.0 27.9 7.38 370 325 304 100 1332 77.00 49 AV49 0.9 2.2	1027	68.00	41	AV41	0.9	2.2	0.9	26.9	7.20	421	391	389	100
111170.0041AV410.82.21.026.57.23391354336100114771.0036AV360.82.21.127.87.39381341322100118672.0039AV390.82.21.027.57.35377338309100122673.0040AV400.82.31.027.87.38376337306100126574.0039AV390.82.21.027.27.29367327293100130575.0040AV400.82.31.028.07.41373329303100130575.0040AV400.82.31.027.57.34380336315100130575.0040AV400.82.31.027.57.34380336315100134376.0038AV380.82.31.027.57.34380336315100139277.0049AV490.92.21.027.57.34380336315100143178.0039AV391.12.30.729.37.57641588567100149179.0060AV601.32.30.729.87.65741717703100 <td>1070</td> <td>69.00</td> <td>43</td> <td>AV43</td> <td>0.8</td> <td>2.2</td> <td>0.9</td> <td>26.8</td> <td>7.23</td> <td>419</td> <td>388</td> <td>386</td> <td>100</td>	1070	69.00	43	AV43	0.8	2.2	0.9	26.8	7.23	419	388	386	100
114771.0036AV360.82.21.127.87.39381341322100118672.0039AV390.82.21.027.57.35377338309100122673.0040AV400.82.31.027.87.38376337306100126574.0039AV390.82.21.027.27.29367327293100130575.0040AV400.82.31.028.07.41373329303100134376.0038AV380.82.31.027.97.38370325304100139277.0049AV490.92.21.027.57.34380336315100143178.0039AV391.12.30.928.97.51471420392100143179.0060AV601.32.30.729.87.65741717703100157880.0087AV871.62.30.729.87.65741717703100165081.0072AV721.82.51.134.88.38824814803100175582.00105AV1052.02.50.935.68.59855844834100<	1111	70.00	41	AV41	0.8	2.2	1.0	26.5	7.23	391	354	336	100
118672.0039AV390.82.21.027.57.35377338309100122673.0040AV400.82.31.027.87.38376337306100126574.0039AV390.82.21.027.27.29367327293100130575.0040AV400.82.31.028.07.41373329303100134376.0038AV380.82.31.027.97.38370325304100139277.0049AV490.92.21.027.57.34380336315100143178.0039AV391.12.30.928.97.51471420392100149179.0060AV601.32.30.729.37.57641588567100157880.0087AV871.62.30.729.87.65741717703100165081.0072AV721.82.51.134.88.38824814803100175582.00105AV1052.02.50.935.68.59855844834100194884.00101AV1011.92.40.933.98.60815799790100 <td>1147</td> <td>71.00</td> <td>36</td> <td>AV36</td> <td>0.8</td> <td>2.2</td> <td>1.1</td> <td>27.8</td> <td>7.39</td> <td>381</td> <td>341</td> <td>322</td> <td>100</td>	1147	71.00	36	AV36	0.8	2.2	1.1	27.8	7.39	381	341	322	100
122673.0040AV400.82.31.027.87.38376337306100126574.0039AV390.82.21.027.27.29367327293100130575.0040AV400.82.31.028.07.41373329303100134376.0038AV380.82.31.027.97.38370325304100139277.0049AV490.92.21.027.57.34380336315100143178.0039AV391.12.30.928.97.51471420392100149179.0060AV601.32.30.729.37.57641588567100157880.0087AV871.62.30.729.87.65741717703100165081.0072AV721.82.51.134.88.38824814803100175582.00105AV1052.02.51.034.78.40893885879100184783.0092AV922.02.50.935.68.59855844834100194884.00101AV1011.92.40.933.98.60815799790100 <td>1186</td> <td>72.00</td> <td>39</td> <td>AV39</td> <td>0.8</td> <td>2.2</td> <td>1.0</td> <td>27.5</td> <td>7.35</td> <td>377</td> <td>338</td> <td>309</td> <td>100</td>	1186	72.00	39	AV39	0.8	2.2	1.0	27.5	7.35	377	338	309	100
126574.0039AV390.82.21.027.27.29367327293100130575.0040AV400.82.31.028.07.41373329303100134376.0038AV380.82.31.027.97.38370325304100139277.0049AV490.92.21.027.57.34380336315100143178.0039AV391.12.30.928.97.51471420392100149179.0060AV601.32.30.729.37.57641588567100157880.0087AV871.62.30.729.87.65741717703100165081.0072AV721.82.51.134.88.38824814803100175582.00105AV1052.02.51.034.78.40893885879100184783.0092AV922.02.50.935.68.59855844834100194884.00101AV1011.92.40.933.98.60815799790100198584.25148AV371.82.10.426.97.93861841834100 <td>1226</td> <td>73.00</td> <td>40</td> <td>AV40</td> <td>0.8</td> <td>2.3</td> <td>1.0</td> <td>27.8</td> <td>7.38</td> <td>376</td> <td>337</td> <td>306</td> <td>100</td>	1226	73.00	40	AV40	0.8	2.3	1.0	27.8	7.38	376	337	306	100
130575.0040AV400.82.31.028.07.41373329303100134376.0038AV380.82.31.027.97.38370325304100139277.0049AV490.92.21.027.57.34380336315100143178.0039AV391.12.30.928.97.51471420392100149179.0060AV601.32.30.729.37.57641588567100157880.0087AV871.62.30.729.87.65741717703100165081.0072AV721.82.51.134.88.38824814803100175582.00105AV1052.02.51.034.78.40893885879100184783.0092AV922.02.50.935.68.59855844834100194884.00101AV1011.92.40.933.98.60815799790100198584.25148AV371.82.10.426.97.93861841834100207085.00113AV851.82.30.430.38.36756747743100 </td <td>1265</td> <td>74.00</td> <td>39</td> <td>AV39</td> <td>0.8</td> <td>2.2</td> <td>1.0</td> <td>27.2</td> <td>7,29</td> <td>367</td> <td>327</td> <td>293</td> <td>100</td>	1265	74.00	39	AV39	0.8	2.2	1.0	27.2	7,29	367	327	293	100
134376.0038AV380.82.31.027.97.38370325304100139277.0049AV490.92.21.027.57.34380336315100143178.0039AV391.12.30.928.97.51471420392100149179.0060AV601.32.30.729.37.57641588567100157880.0087AV871.62.30.729.87.65741717703100165081.0072AV721.82.51.134.88.38824814803100175582.00105AV1052.02.51.034.78.40893885879100184783.0092AV922.02.50.935.68.59855844834100194884.00101AV1011.92.40.933.98.60815799790100198584.25148AV371.82.10.426.97.93861841834100207085.00113AV851.82.30.430.38.38824808806100215486.0084AV841.72.20.429.68.36756747743100 </td <td>1305</td> <td>75.00</td> <td>40</td> <td>AV40</td> <td>0.8</td> <td>2.3</td> <td>1.0</td> <td>28.0</td> <td>7.41</td> <td>373</td> <td>329</td> <td>303</td> <td>100</td>	1305	75.00	40	AV40	0.8	2.3	1.0	28.0	7.41	373	329	303	100
139277.0049AV490.92.21.027.57.34380336315100143178.0039AV391.12.30.928.97.51471420392100149179.0060AV601.32.30.729.37.57641588567100157880.0087AV871.62.30.729.87.65741717703100165081.0072AV721.82.51.134.88.38824814803100175582.00105AV1052.02.51.034.78.40893885879100184783.0092AV922.02.50.935.68.59855844834100194884.00101AV1011.92.40.933.98.60815799790100198584.25148AV371.82.10.426.97.93861841834100207085.00113AV851.82.30.430.38.36756747743100215486.0084AV841.72.20.429.68.36756747743100	1343	76.00	38	AV38	0.8	2.3	1.0	27.9	7.38	370	325	304	100
1431 78.00 39 AV39 1.1 2.3 0.9 28.9 7.51 471 420 392 100 1491 79.00 60 AV60 1.3 2.3 0.7 29.3 7.57 641 588 567 100 1578 80.00 87 AV87 1.6 2.3 0.7 29.8 7.65 741 717 703 100 1650 81.00 72 AV72 1.8 2.5 1.1 34.8 8.38 824 814 803 100 1755 82.00 105 AV105 2.0 2.5 1.0 34.7 8.40 893 885 879 100 1847 83.00 92 AV92 2.0 2.5 0.9 35.6 8.59 855 844 834 100 1948 84.00 101 AV101 1.9 2.4 0.9 33.9 8.60 815 799 790 100 1948 84.25 148 AV37 1.8 2.1	1392	77.00	49	AV49	0.9	2.2	1.0	27.5	7.34	380	336	315	100
1491 79.00 60 AV60 1.3 2.3 0.7 29.3 7.57 641 588 567 100 1578 80.00 87 AV87 1.6 2.3 0.7 29.8 7.65 741 717 703 100 1650 81.00 72 AV72 1.8 2.5 1.1 34.8 8.38 824 814 803 100 1755 82.00 105 AV105 2.0 2.5 1.0 34.7 8.40 893 885 879 100 1847 83.00 92 AV92 2.0 2.5 0.9 35.6 8.59 855 844 834 100 1948 84.00 101 AV101 1.9 2.4 0.9 33.9 8.60 815 799 790 100 1948 84.25 148 AV37 1.8 2.1 0.4 26.9 7.93 861 841 834 100 2070 85.00 113 AV85 1.8 2.3	1431	78.00	39	AV39	1.1	2.3	0.9	28.9	7.51	471	420	392	100
1578 80.00 87 AV87 1.6 2.3 0.7 29.8 7.65 741 717 703 100 1650 81.00 72 AV72 1.8 2.5 1.1 34.8 8.38 824 814 803 100 1755 82.00 105 AV105 2.0 2.5 1.0 34.7 8.40 893 885 879 100 1847 83.00 92 AV92 2.0 2.5 0.9 35.6 8.59 855 844 834 100 1948 84.00 101 AV101 1.9 2.4 0.9 33.9 8.60 815 799 790 100 1985 84.25 148 AV37 1.8 2.1 0.4 26.9 7.93 861 841 834 100 2070 85.00 113 AV85 1.8 2.3 0.4 30.3 8.38 824 808 <td< td=""><td>1491</td><td>79.00</td><td>60</td><td>AV60</td><td>1.3</td><td>2.3</td><td>0.7</td><td>29.3</td><td>7.57</td><td>641</td><td>588</td><td>567</td><td>100</td></td<>	1491	79.00	60	AV60	1.3	2.3	0.7	29.3	7.57	641	588	567	100
1650 81.00 72 AV72 1.8 2.5 1.1 34.8 8.38 824 814 803 100 1755 82.00 105 AV105 2.0 2.5 1.0 34.7 8.40 893 885 879 100 1847 83.00 92 AV92 2.0 2.5 0.9 35.6 8.59 855 844 834 100 1948 84.00 101 AV101 1.9 2.4 0.9 33.9 8.60 815 799 790 100 1985 84.25 148 AV37 1.8 2.1 0.4 26.9 7.93 861 841 834 100 2070 85.00 113 AV85 1.8 2.3 0.4 30.3 8.38 824 808 806 100 2154 86.00 84 AV84 1.7 2.2 0.4 29.6 8.36 756 747 743 100	1578	80.00	87	AV87	1.6	2.3	0.7	29.8	7.65	741	717	703	100
1755 82.00 105 AV105 2.0 2.5 1.0 34.7 8.40 893 885 879 100 1847 83.00 92 AV92 2.0 2.5 0.9 35.6 8.59 855 844 834 100 1948 84.00 101 AV101 1.9 2.4 0.9 33.9 8.60 815 799 790 100 1985 84.25 148 AV37 1.8 2.1 0.4 26.9 7.93 861 841 834 100 2070 85.00 113 AV85 1.8 2.3 0.4 30.3 8.38 824 808 806 100 2154 86.00 84 AV84 1.7 2.2 0.4 29.6 8.36 756 747 743 100	1650	81.00	72	AV72	1.8	2.5	1.1	34.8	8.38	824	814	803	100
1847 83.00 92 AV92 2.0 2.5 0.9 35.6 8.59 855 844 834 100 1948 84.00 101 AV101 1.9 2.4 0.9 33.9 8.60 815 799 790 100 1948 84.25 148 AV37 1.8 2.1 0.4 26.9 7.93 861 841 834 100 2070 85.00 113 AV85 1.8 2.3 0.4 30.3 8.38 824 808 806 100 2154 86.00 84 AV84 1.7 2.2 0.4 29.6 8.36 756 747 743 100	1755	82.00	105	AV105	2.0	2.5	1.0	34.7	8.40	893	885	879	100
1948 84.00 101 AV101 1.9 2.4 0.9 33.9 8.60 815 799 790 100 1948 84.25 148 AV37 1.8 2.1 0.4 26.9 7.93 861 841 834 100 2070 85.00 113 AV85 1.8 2.3 0.4 30.3 8.38 824 808 806 100 2154 86.00 84 AV84 1.7 2.2 0.4 29.6 8.36 756 747 743 100	1847	83.00	92	AV/92	2.0	2.5	0.9	35.6	8.59	855	844	834	100
1985 84.25 148 AV37 1.8 2.1 0.4 26.9 7.93 861 841 834 100 2070 85.00 113 AV85 1.8 2.3 0.4 30.3 8.38 824 808 806 100 2154 86.00 84 AV84 1.7 2.2 0.4 29.6 8.36 756 747 743 100	1948	84.00	101	AV/101	19	2.0	0.0	33.0	8 60	815	700	790	100
2070 85.00 113 AV85 1.8 2.3 0.4 30.3 8.38 824 808 806 100 2154 86.00 84 AV84 1.7 2.2 0.4 29.6 8.36 756 747 743 100	1985	84 25	148	AV/37	1.8	21	0.0	26.9	7.93	861	R41	834	100
2154 86.00 84 AV84 1.7 2.2 0.4 29.6 8.36 756 747 743 100	2070	85.00	113	AV/85	1.8	23	0.4	30.3	8,38	824	808	808	100
ALC 0.4 40.0 0.00 700 747 743 100	2154	86.00	Q/	A/\84	17	2.0	0.4	20.6	8.26	756	7/7	742	100
2229 87.00 75 AV75 1.5 2.2 0.4 29.0 8.40 687 684 683 100	2229	87.00	75	AV75	1.5	2.2	0.4	29.0	8.40	687	684	683	100

Nodarse & Associates Inc Case Method & iCAP® Results I-4 OVER DEER CROSSING - EB 3-1, P5

Page 2 of 2 PDIPLOT Ver. 2012.2 - Printed: 3-Oct-2013 RE 52.18, CE 51.6 NBR 494k

OP: MK	C DELICO	0000000	2001,11	5						Test	date: 24-Se	ep-2013
BL# end 2290	depth ft 88.00	BLC bl/ft 61	TYPE AV61	CSB ksi 1.4	CSX ksi 2.1	TSX ksi 0.4	EMX k-ft 28.1	STK ft 8.37	RX4 kips 628	RMX kips 625	RX6 kips 623	BTA (%) 100
2351	89.00	61	AV61	1.3	2.1	0.4	27.3	8.32	596	587	586	100
2404	90.00	53	AV53	1.2	2.0	0.4	27.0	8.33	586	553	547	100
2454	91.00	50	AV50	1.1	2.0	0.3	26.5	8.38	585	538	529	100
2510	92.00	56	AV56	1.1	2.1	0.3	26.6	8.49	587	537	530	100
2565	93.00	55	AV55	1.1	2.1	0.4	27.1	8.63	578	529	522	100
2621	94.00	56	AV56	1.2	2.2	0.4	27.0	8.57	598	545	534	100
2674	95.00	53	AV53	1.3	2.2	0.4	28.3	8.72	662	619	606	100
2734	96.00	60	AV60	1.5	2.3	0.4	29.7	8.84	718	683	676	100
2793	97.00	59	AV59	1.6	2.4	0.4	30.8	8.93	762	722	710	100
2853	98.00	60	AV60	1.8	2.4	0.4	31.9	9.02	808	771	741	100
2911	99.00	58	AV58	1.9	2.5	0.5	32.6	9.06	856	824	793	100
2979	100.00	68	AV68	2.2	2.5	0.5	33.8	9.20	1,036	1,016	997	100
3071	101.00	92	AV92	2.4	2.6	0.5	34.9	9.21	1,217	1,196	1,185	100
3164	102.00	93	AV93	2.6	2.6	0.4	36.7	9.40	1,258	1,234	1,217	100
			Average	1.4	2.2	0.7	28.0	7.85	633	606	593	100

Total number of blows analyzed: 3164

BL# depth (ft) Comments Comments 494 k Test pile, NBR 594k, GE: 46.18 feet CHANGE CUSHION

44.11 1

1939 83.91

Time Summary

44 minutes 20 seconds Drive

Stop 13 minutes 17 seconds Drive 30 minutes 27 seconds 10:08:11 AM - 10:52:31 AM (9/24/2013) BN 1 - 1939 10:52:31 AM - 11:05:48 AM 11:05:48 AM - 11:36:15 AM BN 1940 - 3164

Total time [1:28:04] = (Driving [1:14:47] + Stop [0:13:17])

157

Nodarse & Associates Inc - Case Method & iCAP® Results

Nodarse & Associates Inc Case Method & iCAP® Results

1755

1847

1948

1985

2070

2154

2229

-29.8

-30.8

-31.8

-32.1

-32.8

-33.8

-34.8

105

92

101

148

113

84

75

AV105

AV92

AV101

AV37

AV85

AV84

AV75

2.0

2.0

1.9

1.8

1.8

1.7

1.5

2.5

2.5

2.4

2.1

2.3

2.2

2.2

I-4 OVER DEER CROSSING - EB 3-1, P5 RE 52.18, CE 51 OP: MK Test date: 2											CE 51.6 N8 date: 24-S	BR 494k ap-2013
AR: LE: WS	576.00 in^2 111.00 ft 14.050 6 f/s										SP: 0.1 EM: 6,3	150 k/ft3 392 ksi
CSB CSX TSX: EMX	Compression Max Measure Tension Stres Max Transfer	n Stress at ed Compr. ss Maximu rred Energ tammer St	Bottom Stress m y					RX4: RMX: RX6: BTA:	Max Ca Max Ca Max Ca BETA Ir	se Method se Method se Method ntegrity Fac	Capacity (Capacity Capacity Capacity (tor	JC=0.4) JC=0.6)
BL	# Elev.	BLC	TYPE	CSB	CSX	TSX	EMX	STK	RX4	RMX	RX6	BTA
end	0 70	bl/ft	A) /O	ksi	ksi	ksi	k-ft	ft	kips	kips	kips	(%)
4	5 62	36	AVS	1.0	1.0	0.7	20.4	6.42	410	392	384	100
4 0	6 52	30	AV 30	1.0	1.0	0.7	20.4	6.44	410	395	307	100
10	0 12	41	AV41	1.0	1.0	0.7	20.4	0.41	413	390	304	100
16	a 32	40	AV45	1.0	1.0	0.0	10.2	6.00	415	401	390	100
21	5 33	40	AV40	1.0	1.0	0.0	19.3	0.20	424	409	397	100
21	3 10	40	AV40	1.0	1.0	0.6	19.4	0.30	438	424	413	100
20	0 02	40	AV40	1.0	1.7	0.5	10.5	6.43	440	430	418	100
36	0 0.2	47 52	AV47	1.0	1.7	0.5	19.5	0.43	403	430	423	100
41	/ _1 P	53	AV53	1.1	1.0	0.5	19.9	6.52	474	444	427	100
41	4 -1.0 0 .2.9	56	AV51	1.1	1.0	0.5	20.0	6.60	470	441	420	100
47 51	0 -2.0 5 3.0	30	AVJO	1.1	1.0	0.5	20.5	0.00	4/0	438	425	100
51	-3.8 7 4.9	40	AV45	1.1	2.0	0.7	24.2	7.19	487	475	463	100
60	-4.8	42	AV42	1.1	2.0	0.7	24.4	7.21	477	463	448	100
65	-5.6 6 6 9	47	AV47	1.1	2.0	0.7	24.7	7.23	473	449	433	100
60	-0.0	40	AV40	1.1	2.1	0.8	25.9	7.30	468	434	419	100
70	-7.0	43	AV43	1.1	2.1	0.9	26.7	7.39	451	413	398	100
73	-0.0	39	AV 39	1.0	2.2	0.9	26.9	7.40	437	394	379	100
/0	-9.8	34	AV 34	1.0	2.2	0.9	28.0	7.49	424	391	380	100
60	5 -10,8 7 44.0	39	AV39	0.9	2.1	0.8	24.2	6.92	407	374	360	100
04	-7 -11.8	42	AV4Z	0.9	2.1	0.8	24.1	6.86	415	381	368	100
89	-12.8	50	AV50	1.0	2.1	0.8	25.2	7.01	451	411	382	100
94	2 -13.8	45	AV45	1.0	2.1	0.8	26.1	7.12	440	402	395	100
98	-14.8	44	AV44	0.9	2.1	0.9	26.0	7.09	418	392	391	100
102	-15.8	41	AV41	0.9	2.2	0.9	26.9	7.20	421	391	389	100
107	0 -16.8	43	AV43	0.8	2.2	0.9	26.8	7.23	419	388	386	100
111	7 40.0	41	AV41	0.8	2.2	1.0	26.5	7.23	391	354	336	100
114	-18.8	36	AV36	0.8	2.2	1.1	27.8	7.39	381	341	322	100
118	6 -19.8	39	AV39	0.8	2.2	1.0	27.5	7.35	377	338	309	100
122	6 -20.8	40	AV40	0.8	2.3	1.0	27.8	7.38	376	337	306	100
126	5 -21.8	39	AV39	0.8	2.2	1.0	27.2	7.29	367	327	293	100
130	5 -22.8	40	AV40	0.8	2.3	1.0	28.0	7.41	373	329	303	100
134	3 -23.8	38	AV38	0.8	2.3	1.0	27.9	7.38	370	325	304	100
139	-24.8	49	AV49	0.9	2.2	1.0	27.5	7.34	380	336	315	100
143	1 -25.8	39	AV39	1.1	2.3	0.9	28.9	7.51	471	420	392	100
149	-26.8	60	AV60	1.3	2.3	0.7	29.3	7.57	641	588	567	100
157	8 -27.8	87	AV87	1.6	2.3	0.7	29.8	7.65	741	717	703	100
165	u -28.8	72	AV72	1.8	2.5	1.1	34.8	8.38	824	814	803	100

34.7

35.6

33.9

26.9

30.3

29.6

29.0

8.40

8.59

8.60

7.93

8.38

8.36

8.40

893

855

815

861

824

756

687

885

844

799

841

808

747

684

803

879

834

790

834

806

743

683

100

100

100

100

100

100

100

100

1.0

0.9

0.9

0.4

0.4

0.4

0.4

Nodarse & Associates Inc Case Method & iCAP® Results I-4 OVER DEER CROSSING - EB 3-1, P5 Page 2 of 2 PDIPLOT Ver. 2012.2 - Printed: 3-Oct-2013

I-4 OVEF OP: MK	R DEER CR	OSSING	- EB 3-1, P	5						RE 52.18, Test	CE 51.6 NE date: 24-Se	3R 494k sp-2013
BL# end	Elev.	BLC bl/ft	TYPE	CSB ksi	CSX ksi	TSX ksi	EMX k-ft	STK ft	RX4 kips	RMX kips	RX6 kips	BTA (%)
2290	-35.8	61	AV61	1.4	2.1	0.4	28.1	8.37	628	625	623	100
2351	-36.8	61	AV61	1.3	2.1	0.4	27.3	8.32	596	587	586	100
2404	-37.8	53	AV53	1.2	2.0	0.4	27.0	8.33	586	553	547	100
2454	-38.8	50	AV50	1.1	2.0	0.3	26.5	8.38	585	538	529	100
2510	-39.8	56	AV56	1.1	2.1	0.3	26.6	8.49	587	537	530	100
2565	-40.8	55	AV55	1.1	2.1	0.4	27.1	8.63	578	529	522	100
2621	-41.8	56	AV56	1.2	2.2	0.4	27.0	8.57	598	545	534	100
2674	-42.8	53	AV53	1.3	2.2	0.4	28.3	8.72	662	619	606	100
2734	-43.8	60	AV60	1.5	2.3	0.4	29.7	8.84	718	683	676	100
2793	-44.8	59	AV59	1.6	2.4	0.4	30.8	8.93	762	722	710	100
2853	-45.8	60	AV60	1.8	2.4	0.4	31.9	9.02	808	771	741	100
2911	-46.8	58	AV58	1.9	2.5	0.5	32.6	9.06	856	824	793	100
2979	-47.8	68	AV68	2.2	2.5	0.5	33.8	9.20	1,036	1,016	997	100
3071	-48.8	92	AV92	2.4	2.6	0.5	34.9	9.21	1,217	1,196	1,185	100
3164	-49.8	93	AV93	2.6	2.6	0.4	36.7	9.40	1,258	1,234	1,217	100
			Average	1.4	2.2	0.7	28.0	7.85	633	606	593	100

Total number of blows analyzed: 3164

BL# Elev. Comments

Comments 494k Test pile, NBR 594k, GE: 46.18 feet CHANGE CUSHION 8.1 1

1939 -31.7

Time Summary

Drive

44 minutes 20 seconds Drive

Stop 13 minutes 17 seconds 10:08:11 AM - 10:52:31 AM (9/24/2013) BN 1 - 1939 10:52:31 AM - 11:05:48 AM 11:05:48 AM - 11:36:15 AM BN 1940 - 3164

30 minutes 27 seconds

Total time [1:28:04] = (Driving [1:14:47] + Stop [0:13:17])

160

PDIPLOT Ver. 2012.2 - Printed: 3-Oct-2013

Nodarse & Associates Inc - Case Method & iCAP® Results

Test date: 20-Sep-2013

Nodar Case	se & Associat Method & iCA	es Inc P® Resul	ts					PDIP	LOT Ver	: 2012.2 - P	Pag rinted: 3-0	e 1 of 2 ct-2013
I-4 OV OP: M	/ER DEER CR	ROSSING	- IB 3-2, P1							RE 51.5 Test (9, GE 42.2 date: 20-Se	4, 754K 2013
AR: LE: WS: 1	576.00 in^2 116.00 ft 4,146.3 f/s										SP: 0.1 EM: 6,4 JC: 0	50 k/ft3 79 ksi .50
CSB: CSX: TSX: EMX: STK:	Compression Max Measure Tension Stres Max Transfer	Stress at d Compr. ss Maximu red Energ	Bottom Stress Jm Jy					RX4: RMX: RX6: BTA:	Max Ca Max Ca Max Ca BETA I	ase Method ase Method ase Method ntegrity Fac	Capacity Capacity Capacity (Capacity (JC=0.4) JC=0.6)
BL#	depth	BLC	TYPE	CSB	CSX	TSX	EMX	STK	RX4	RMX	RX6	BTA
end 54	ft 41.00	bl/ft 54	AV/54	ksi 1.2	ksì 1.8	ksi 0.5	k-ft 18.8	ft 5.96	kips 471	kips 459	kips 454	(%) 100
100	42.00	46	AV46	1.2	2.1	0.8	26.5	7.25	480	457	435	100
156	43.00	56	AV56	1.2	2.1	0.8	25.7	7.13	478	457	437	100
197	44.00	41	AV41	1.2	2.1	0.8	25.9	7.14	474	452	431	100
240	45.00	43	AV43	1.2	2.2	0.8	28.0	7.46	483	457	435	100
283	46.00	43	AV43	1.2	2.2	0.8	28.0	7.42	486	458	439	100
322	47.00	39	AV39	1.2	2.2	0.9	28.8	7.50	488	461	446	100
366	48.00	44	AV44	1.2	2.3	0.9	29.0	7.51	497	471	454	100
410	49.00	44	AV44	1.3	2.3	0.8	29.6	7.56	508	480	459	100
460	50.00	50	AV50	1.3	2.3	0.8	30.2	7.61	522	495	471	100
512	51.00	52	AV52	1.3	2.4	0.8	30.9	7.65	535	509	483	100
565	52.00	53	AV53	1.4	2.4	0.8	32.0	7.79	554	525	499	100
612	53.00	47	AV47	1.4	2.5	0.9	34.2	8.08	569	537	512	100
655	54.00	43	AV43	1.4	2.5	1.0	35.0	8,17	575	541	517	100
699	55.00	44	AV44	1.3	2.5	1.0	35.1	8.16	580	546	523	100
744	56.00	45	AV45	1.3	2.5	1.0	35.1	8.15	579	546	523	100
797	57.00	53	AV53	1.3	2.5	1.0	34.8	8.08	578	546	523	100
839	58.00	42	AV42	1.3	2.5	1.0	35.5	8.12	570	539	514	100
884	59.00	45	AV45	1.3	2.6	1.1	36.1	8.22	575	546	521	100
928	60.00	44	AV44	1.3	2.6	1.1	36.2	8.23	574	547	523	100
975	61.00	47	AV47	1.2	2.6	1.0	36.5	8.26	571	545	523	100
1012	62.00	37	AV37	1.2	2.6	1.0	36.5	8.25	548	523	502	100
1057	63.00	45	AV45	1.2	2.7	1.0	36.7	8.30	539	514	495	100
1096	64.00	39	AV39	1.1	2.7	1.0	36.9	8.37	521	497	480	100
1138	65.00	42	AV42	1.1	2.7	1.0	36.6	8.35	503	480	466	100
1 182	66.00	44	AV44	1.1	2.7	0.9	35.8	8.32	498	470	457	100
1224	67.00	42	AV42	1.0	2.7	1.0	35.6	8.29	482	452	441	100
1258	68.00	34	AV34	0.9	2.7	1.0	35.8	8.31	466	431	418	100
1295	69.00	37	AV37	0.9	2.7	1.0	35.3	8.29	471	431	400	100
1337	70.00	42	AV42	1.0	2.6	1.0	35.0	8.29	482	437	399	100
1380	71.00	43	AV43	1.0	2.6	0.9	34.2	8.22	483	436	394	100
1429	72.00	49	AV49	1.0	2.5	0.9	32.8	8.09	486	436	393	100
1486	73.00	57	AV57	0.9	2.2	0.7	27.0	7.70	559	509	461	100
1540	74.00	54	AV54	0.9	2.3	0.9	27.7	7.61	539	484	433	100
1585	75.00	45	AV45	1.0	2.4	0.9	29.8	7.96	528	468	414	100
1641	76.00	56	AV56	1.0	2.5	0.9	30.7	8.24	532	469	413	100
1689	77.00	48	AV48	1.0	2.5	0.8	31.5	8.42	575	491	434	100
1771	78.00	82	AV82	1.2	2.5	0.5	31.3	8.49	787	668	601	100
1853	79.00	82	AV82	1.4	2.4	0.3	31.4	8.61	889	795	756	100
1970	80.00	117	AV117	1.7	2.3	0.3	30.9	8.78	937	887	849	100
2110	81.00	140	AV140	1.9	2.3	0.4	32.1	9.01	987	947	911	100
2253	82.00	143	AV143	2.1	2.5	0.5	35.0	9.15	1,030	1,008	997	100
2408	83.00	155	AV/155	2.2	2.6	0.7	38.5	9.35	996	982	9/3	100
2516	84.00	108	AVIUS	1.1	2.1	0.9	40.3	9.38	947	928	919	100
Nodarse & Associates Inc Case Method & iCAP® Results I-4 OVER DEER CROSSING - IB 3-2, P1

OP: MK	IN DELIN ON	00001110	- (0)-2, 1 1							Test	date: 20-Se	ep-2013
BL# end 2621	depth ft 85.00	BLC bl/ft 105	TYPE AV105	CSB ksi 2.1	CSX ksi 2.8	TSX ksi 1.0	EMX k-ft 40.9	STK ft 9.35	RX4 kips 880	RMX kips 868	RX6 kips 861	BTA (%) 100
2718	86.00	97	AV97	2.0	2.9	1.1	41.1	9.29	821	815	812	100
2788	87.00	70	AV70	1.9	2.9	1.1	40.2	9.14	773	770	768	100
2853	88.00	65	AV65	1.8	2.9	1.2	40.4	9.15	740	735	732	100
2919	89.00	66	AV66	1.7	2.9	1.2	40.4	9.17	700	692	687	100
2989	90.00	70	AV70	1.6	2.8	1.2	36.4	8.63	654	645	642	100
3071	91.00	82	AV82	1.5	2.4	1.0	28.1	7.39	631	625	620	100
3124	92.00	53	AV53	1.6	2.6	1.0	32.6	8.10	631	621	613	100
3189	93.00	65	AV65	1.6	2.7	1.0	33.2	8.31	627	616	605	91
3275	94.00	86	AV86	1.5	2.4	0.7	29.6	8.13	674	653	632	91
3353	95.00	78	AV78	1.4	2.2	0.3	26.9	7.95	725	686	648	100
3434	96.00	81	AV81	1.4	2.2	0.3	26.1	7.95	719	681	644	100
3520	97.00	86	AV86	1.4	2.1	0.3	25.3	7.94	747	707	669	100
3597	98.00	77	AV77	1.4	2.1	0.3	24.0	7.84	797	756	717	100
3697	99.00	100	AV100	1.5	2.0	0.3	24.1	7.99	884	840	799	100
3817	100.00	120	AV120	1.8	2.0	0.4	25.5	8.30	1,072	1,031	999	100
3962	101.00	145	AV145	2.0	2.1	0.5	27.2	8.55	1,232	1,205	1,179	100
4059	101.50	194	AV97	2.4	2.3	0.6	29.8	8.86	1,422	1,405	1,392	100
4077	101.58	216	AV18	3.1	2.6	0.5	35.4	9.33	1,678	1,620	1,585	100
4098	101.67	252	AV21	3.3	2.7	0.6	37.0	9.48	1,730	1,692	1,664	100
			Average	1.5	2.4 Tatal -	0.7	32.2	8.34	748	716	692	100

Total number of blows analyzed: 4098

BL#	depth (ft)	Comments	
1	40.02	NBR: 377 tons (754 kips)	21 blows recorded), 101 FT 8 IN
1448	72.33	CUSHION CHANGE	
3250	93.71	CUSHION CHANGE	
4059	101.50	MARK INCHES	
4098	101.67	HIGH CSB, 18 / 19 BPI (2010)	
Time Sun	nmary		
Drive	34 minutes 19) seconds	1:47:15 PM - 2:21:34 PM (9/20/2013) BN 1 - 1448
Stop	19 minutes 44	seconds	2:21:34 PM - 2:41:18 PM
Drive	44 minutes 57	/ seconds	2:41:18 PM - 3:26:15 PM BN 1449 - 3250
Stop	17 minutes 1	second	3:26:15 PM - 3:43:16 PM
Drive	29 minutes 58	} seconds	3:43:16 PM - 4:13:14 PM BN 3251 - 4098

44 minutes 57 seconds	2:41:18 PM - 3:26:15 PM B
17 minutes 1 second	3:26:15 PM - 3:43:16 PM
20 minutos E9 eccando	2/42/46 DM 4/42/44 DM 0

29 minutes 58 seconds	3:43:16 PM - 4:13:14 PM BN 3251 - 4098

Total time [2:25:59] = (Driving [1:49:14] + Stop [0:36:45])

PDIPLOT Ver. 2012.2 - Printed: 3-Oct-2013

Nodarse & Associates Inc - Case Method & iCAP® Results

Test date: 20-Sep-2013

Nodarse & Associates Inc Case Method & iCAP® Results									Page 1 of 2 PDIPLOT Ver. 2012.2 - Printed: 3-Oct-2013						
I-4 OV O <u>P: M</u>	ER DEER CR	ROSSING	- IB 3-2, P1							RE 51.5 Test	9, GE 42.2 date: 20-Se	4, 754K ep-2013			
AR: LE: WS: 1	576.00 in^2 116.00 ft 4,146.3 f/s										SP: 0.1 EM: 6,4 JC: 0	150 k/ft3 179 ksi .50			
CSB: CSX: TSX: EMX: STK:	Compression Max Measure Tension Stres Max Transfer	Stress at ed Compr. ss Maximu red Energ	t Bottom Stress Jm Jy					RX4: RMX: RX6: BTA:	Max Ca Max Ca Max Ca BETA I	ase Method ase Method ase Method ntegrity Fac	Capacity (Capacity Capacity (tor	JC=0.4) JC=0.6)			
BL#	Elev.	BLC	TYPE	CSB	CSX	TSX	EMX	STK	RX4	RMX	RX6	BTA			
end	10.6	bl/ft	A\/5A	ksi 1 2	ksi	ksi	k-ft	ft	kips	kips	kips	(%)			
100	0.01	46	AV/46	1.2	1.0	0.5	10.0	7.25	471	459	404	100			
156	9.0	40	AV40	1.2	2.1	0.0	20.5	7.23	400	407	435	100			
100	76	41	Δ\///1	1.2	2.1	0.0	25.0	7.13	470	452	437	100			
240	6.6	43	۵\//43	1.2	2.1	0.0	28.0	7.46	4/4	452	431	100			
283	5.6	43	AV/43	1.2	2.2	0.8	28.0	7 40	486	458	430	100			
322	4.6	39	A\/39	1.2	2.2	0.0	28.8	7.50	488	461	446	100			
366	3.6	44	A\/44	1.2	2.2	0.9	20.0	7.50	400	401	440	100			
410	26	44	AV/44	1.2	2.3	0.8	29.6	7.56	508	480	459	100			
460	16	50	AV/50	1.3	2.3	0.8	30.2	7.61	522	495	433	100			
512	0.6	52	AV/52	1.3	2.0	0.8	30.9	7.65	535	509	483	100			
565	-0.4	53	AV/53	14	24	0.8	32.0	7 79	554	525	400	100			
612	-1.4	47	AV/47	14	2.5	0.9	34.2	8.08	569	537	512	100			
655	-2.4	43	AV43	1.4	2.5	1.0	35.0	8.17	575	541	517	100			
699	-3.4	44	AV/44	1.3	2.5	1.0	35.1	8 16	580	546	523	100			
744	-4.4	45	AV45	1.3	2.5	1.0	35.1	8 15	579	546	523	100			
797	-5.4	53	AV53	1.3	2.5	1.0	34.8	8.08	578	546	523	100			
839	-6.4	42	AV42	1.3	2.5	1.0	35.5	8.12	570	539	514	100			
884	-7.4	45	AV45	1.3	2.6	1.1	36.1	8.22	575	546	521	100			
928	-8.4	44	AV44	1.3	2.6	1.1	36.2	8 23	574	547	523	100			
975	-9.4	47	AV47	1.2	2.6	1.0	36.5	8.26	571	545	523	100			
1012	-10.4	37	AV37	1.2	2.6	1.0	36.5	8.25	548	523	502	100			
1057	-11.4	45	AV45	1.2	2.7	1.0	36.7	8.30	539	514	495	100			
1096	-12.4	39	AV39	1.1	2.7	1.0	36.9	8.37	521	497	480	100			
1138	-13.4	42	AV42	1.1	2.7	1.0	36.6	8.35	503	480	466	100			
1182	-14.4	44	AV44	1.1	2.7	0.9	35.8	8.32	498	470	457	100			
1224	-15.4	42	AV42	1.0	2.7	1.0	35.6	8.29	482	452	441	100			
1258	-16.4	34	AV34	0.9	2.7	1.0	35.8	8.31	466	431	418	100			
1295	-17.4	37	AV37	0.9	2.7	1.0	35.3	8.29	471	431	400	100			
1337	-18.4	42	AV42	1.0	2.6	1.0	35.0	8.29	482	437	399	100			
1380	-19.4	43	AV43	1.0	2.6	0.9	34.2	8.22	483	436	394	100			
1429	-20.4	49	AV49	1.0	2.5	0.9	32.8	8.09	486	436	393	100			
1486	-21.4	57	AV57	0.9	2.2	0.7	27.0	7.70	559	509	461	100			
1540	-22.4	54	AV54	0.9	2,3	0.9	27.7	7.61	539	484	433	100			
1585	-23.4	45	AV45	1.0	2.4	0.9	29.8	7,96	528	468	414	100			
1641	-24.4	56	AV56	1.0	2.5	0.9	30.7	8.24	532	469	413	100			
1689	-25.4	48	AV48	1.0	2.5	0.8	31.5	8.42	575	491	434	100			
1771	-26.4	82	AV82	1.2	2.5	0.5	31.3	8.49	787	668	601	100			
1853	-27.4	82	AV82	1.4	2.4	0.3	31.4	8.61	889	795	756	100			
1970	-28.4	117	AV117	1.7	2.3	0.3	30.9	8.78	937	887	849	100			
2110	-29.4	140	AV140	1.9	2.3	0.4	32.1	9.01	987	947	911	100			
2253	-30.4	143	AV143	2.1	2.5	0.5	35.0	9.15	1,030	1,008	997	100			
2408	-31.4	155	AV155	2.2	2.6	0.7	38.5	9.35	996	982	973	100			
2516	-32.4	108	AV108	2.2	2.7	0.9	40.3	9.38	941	928	919	100			

Nodarse & Associates Inc Case Method & ICAP® Results Page 2 of 2 PDIPLOT Ver. 2012.2 - Printed: 3-Oct-2013

I-4 OVER DEER CROSSING - IB 3-2, P1 OP: MK					RE 51.59 Test di								
BL# end 2621	Elev. -33.4	BLC bl/ft 105	TYPE AV105	CSB ksi 2.1	CSX ksi 2.8	TSX ksi 1.0	EMX k-ft 40.9	STK ft 9.35	RX4 kips 880	RMX kips 868	RX6 kips 861	BTA (%) 100	
2718	-34.4	97	AV97	2.0	2.9	1.1	41.1	9.29	821	815	812	100	
2788	-35.4	70	AV70	1.9	2.9	1.1	40.2	9.14	773	770	768	100	
2853	-36.4	65	AV65	1.8	2.9	1.2	40.4	9.15	740	735	732	100	
2919	-37.4	66	AV66	1.7	2.9	1.2	40.4	9.17	700	692	687	100	
2989	-38.4	70	AV70	1.6	2.8	1.2	36.4	8.63	654	645	642	100	
3071	-39.4	82	AV82	1.5	2.4	1.0	28.1	7.39	631	625	620	100	
3124	-40.4	53	AV53	1.6	2.6	1.0	32.6	8.10	631	621	613	100	
3189	-41.4	65	AV65	1.6	2.7	1.0	33.2	8.31	627	616	605	91	
3275	-42.4	86	AV86	1.5	2.4	0.7	29.6	8.13	674	653	632	91	
3353	-43.4	78	AV78	1.4	2.2	0.3	26.9	7.95	725	686	648	100	
3434	-44.4	81	AV81	1.4	2.2	0.3	26.1	7.95	719	681	644	100	
3520	-45.4	86	AV86	1.4	2.1	0.3	25.3	7.94	747	707	669	100	
3597	-46.4	77	AV77	1.4	2.1	0.3	24.0	7.84	797	756	717	100	
3697	-47.4	100	AV100	1.5	2.0	0.3	24.1	7.99	884	840	799	100	
3817	-48.4	120	AV120	1.8	2.0	0.4	25.5	8.30	1,072	1,031	999	100	
3962	-49.4	145	AV145	2.0	2.1	0.5	27.2	8.55	1,232	1,205	1,179	100	
4059	-49.9	194	AV97	2.4	2.3	0.6	29.8	8.86	1,422	1,405	1,392	100	
4077	-50.0	216	AV18	3.1	2.6	0.5	35.4	9.33	1,678	1,620	1,585	100	
4098	-50.1	252	AV21	3.3	2.7	0.6	37.0	9.48	1,730	1,692	1,664	100	
			Average	1.5	2.4	0.7	32.2	8.34	748	716	692	100	

Total number of blows analyzed: 4098

BL#	Elev.	Comments
1	11.6	NBR: 377 tons (754 kips)
1448	-20.7	CUSHION CHANGE
3250	-42.1	CUSHION CHANGE
4059	-49.9	MARK INCHES
4098	-50.1	HIGH CSB, 18 / 19 BPI (21 blows recorded), 101 FT 8 IN

Time Summary

Drive	34 minutes 19 seconds
Stop	19 minutes 44 seconds
Drive	44 minutes 57 seconds
Stop	17 minutes 1 second
Drive	29 minutes 58 seconds

1:47:15 PM - 2:21:34 PM (9/20/2013) BN 1 - 1448 2:21:34 PM - 2:41:18 PM 2:41:18 PM - 3:26:15 PM BN 1449 - 3250 3:26:15 PM - 3:43:16 PM

		01101101101	
29 minutes 58 seconds	3:43:16 PM -	4:13:14 PM	BN 3251 - 4098

Total time [2:25:59] = (Driving [1:49:14] + Stop [0:36:45])

Page No. 1/2

PILE DRIVING INFORMATION

Structure Number: 790207 I-4 over Leer Crossing

FIN F PILE HAM REF. DRIV	PROJ SIZE MER ELE	. ID # : <u>Z4</u> TYPI V _ 1 CRIT	= <u>%</u> ¹ /SQ = <u>%</u> = 5 = 5 = 1.5 = ERIA	ACT ACT 92 - 10 2 - 10	164 UAL/ 6-42 2006 8	AUTH	- <u>5</u> + LEI _ RA M M	Z- NGTH TED	ENERGY	re <u>9-2,4-</u> 5 ben 114,109FT 3	3_STATION VT/PIER NO. <u>/Lbs</u> OPE PILE	N NO11_7 _F_B_3-1 RATING RATE CUTOFF ELE	9 + 00 PILE NO E <u>VARIES</u> EV <u>+ 51.</u>	5 Lo
PILE	CUS	HION	TH	CKN	ESS	AND I	MATE	ERIA	L					
HAM	MER	CUS	HION	I THI	CKN	ESS A	ND	MAT	ERIAL 3	"/2" MICAR	+A 2X 1'	\$ Alum	3 × 1/2	17
WEATHER <u>Cloudy</u> TEMP <u>70</u> START TIME <u>9:43am</u> STOP TIME <u>11:45am</u>														
PILE	DA	ТА			2									
PAY	TEM	NO.		N	A					WORK	ORDER NO.	_r!/A		
MAN	JFAC	TUR	ED E	Y 1	Ωu	RAS	5+R	<u>65</u>	≤ T.E	B.M./B.M. ELE	$V \underline{N/A}$	GROUND I	ROD READ	N/A
DATE	CAS	ST _					1	ROD	READ _	NA	PILE HE	AD ROD REAL	A/21_C	
ΜΑΝΙ	JFAC	TUR	ER'S	PILE	E NO.		<u>H -</u>	18		_H.I/	<u>A</u> F	ILE HEAD EL	EV. <u>65</u> .	181
PILE	HEA	СН	AMF	ER	3/4	$\frac{"X}{X}$	<u> </u>		_	PILE TIP EL	.EV	49.82		
PILE	TIP C	HAN	IFER	3/	14	<u>×</u> _	3			GRO	DUND ELEV.	+ 46.	18.	
QUAL	IFEC) INS	PEC	ror':	S NA	ME: _	101	124	GOIN	NRRI~{to	Ŵ	TIN #: <u>_7/6</u>	525586	0
GACH	IED HOLE	LOAD TEST	CHECK	ET CHECK		NO	DF SPLICE	CODE		PILE L	ENGTH		EXTENSION / BUILD UP	
SPLICE / E	PREFORM	DYNAMIC	PAY SET	NO PAY S	REDRIVE	EXTRACTI	DRIVING (PILE TYPE	BATTER	ORIGINAL FURNISHED	TOTAL LENGTH WITH EXTENSION	PENETRATION BELOW GROUND	AUTHORIZED	ACTUAL
5.00		1.00	0.60	0.06	0.00	0.00	0.03	10	0.000	115	115'	96	0,000	6.000
NOTE	s: (Î) f	โลง	56+	HNG	Ω#/								<u></u>
() f	TUE I	150	+++	- <u> </u>	+/7)								
3 F	2150	contrin	ng ===	: 3										
Q S	lon 2	128.71	J											
(6) >10 7) Sto	1000 ·	to ho	ok u	0 PD	nin go	res e		5.00	n - 10:20ax	α,				
(<u>¥) \$</u>	paid	1:1	chi	<u>ः ्र्</u> न्	2 CL	Jshin	\sim							
For Tra Name	ainee of CT	<i>exper</i> QP Tr	<i>ience</i> ainee	evide being	ence o gisupe	only: ervised	d by Il	he Qu	ualified Insp	beclor:				
				-						1	C	TQP Trainee	le l'e	

I certify the Pile Driving Record accuracy and that the named above Trainee has observed the full pile installation:

69 Qualified Inspector (Signature)

Page No. 2/2

PILE DRIVING LOG

700-010-60 Construction 11/11

Structure No. 790207						Ben	Bent/Pier No. EB 3-1 Pile No. 5								
Depth	Blows	Stroke/ Pressure	Note No.	Depth	Blows	Stroke/ Pressure	Note No.	Depth	Blows	Stroke/ Pressure	Noic No.	Depth	Blows	Siroke/ Pressure	Note No.
0-1			a	33-34	24	6.12	<u>ک</u> نامد:	66-67	44	JW	(Angel	1- 100	68	9.07	300,051
1-2				34-35	{! <u>r</u>	5.57	170%	6768	4	7.08	16000	!d= - 101	92	9.03	3005
2-3				35-36	26	5.93	· · · off:	65-69	43	1.15	Kopi	:41- 102	193	3.25	2622 (
3-4				36-37	31	5.78	1700	69-70	41	1-16	un.				
4-5	-			37-38	73	5,04	· '')();'	7071	36	7,11	160000				
5-6				38-39	43	5.99	1000	71-72	39	7.28	160-1				
6-7				39-46	54	5.96	170esi	72.73	40	7,28	14000				
7-8	0			40-411	51	5.94	170.0	73-74	39	7.22	10000				
3-9				41-42	64	5.92.	17000	74-75	40	6.74	160051				
9-10	y			42-4/3	50	1. AU	1794	75-76	38	7.30	163,5.				
0-11	\mathcal{I}			43-44	51	6.00	170 pi	76-77	49	7.25	160,00				
1-12				44-45	53_	10.05	יקרין	77-78	39	7.37	14000				
2-13	M			45-46	30	6.34	17000	78-79	100	7.44	ladie				
3-14	A/			46-47	υĹΪ	10.35	Mar	79-8	87	7.54	200851				
415	and			47-48	4.3	6.20	1-2:15:	18-05	72	8.16	2018:				
5-16	· KU			48-49	40	6.23	17:001	81-82	105	8.24	20x yrs				
6-17	Q			49-50	46	6.23	170,051	82-83	92	8.47	2.2015				
7-18	(\mathcal{T})			50-51	48	6,26	17000	23-84	101	8.58	250esi	1			
8-19				51-52	47	6.34	17013	84.25	37/25	8.27	300000	84'			
9-20				52-53	53	6.41	170pc.	85-80	84	8.21	25000	, j	12	7.18	
20-21				53-54	51	6.44	17405	86-87	75	8.30	3727.	2"	13	7.79	
1-22				54-55	56	6.52	17000	17. PE	(0)	2.20	305.4	3''	12	7.9%	
2-23				55-56	45	6.94	19Dpsi	38-54	:.1	8.22	200				
3-24				56-57	42	ו, ר	19:051	117. 50	53	8.23	20015				
24-25				5738	47	7.12	14014	··›).?'	50	8.27	300 est				
5-26				58-59	46	η,2.]	190051	11.92	56	8.37	30005.				
6-27	Q			59-60	43	7.28	1900;	12.92	55	8.52	30000				
-7-28	2			60-61	39	7,21	inder.	13.94	56	8.47	EtGps 1				
8-29	2			61-62	34	7.38	190,051	14.95	53	8.53	300 150				
9-30				62.63	39	6,98	16005	95-96	(1)	8: -12	j65,25,				
80-31				63-64	42	10.77	HOR	96-97	S.o	2.8	711.5.				
31-32				64.65	50	6.88.	Umper,	77-98	60	8.91	340,00				
52-33				6565	45	-101	11-Jer	75.99	58	8,94	700 2				

6. 14, 2,

Page No. 1/2. PILE DRIVING INFORMATION	700-010-60 Construction 11/11											
Structure Number: 25-9 over Deck CRESSING 790203												
FIN PROJ. ID # 408464-1-52-1 DATE 9/20/13 STATION NO. 1/78+00)											
PILE SIZE $24''SQ$ ACTUAL/AUTH LENGTH $120'$ BENT/PIER NO. $3-2$ PILE NO.)											
HAMMER TYPE SERAIL 1107634 RATED ENERGY 14,109 FT/165 OPERATING RATE VARIES												
REF. ELEV <u>51.59</u> MIN. TIP ELEV <u>-3.0</u> PILE CUTOFF ELEV <u>50.60</u>												
DRIVING CRITERIA TEST 1916												
A # 322 (1/1/0×5	CAMARY 1555550 10 1											
PILE CUSHION THICKNESS AND MATERIAL 29" 19 X 3/4" PINE PILLOOD 181840 BIOWS	1000 1											
HAMMER CUSHION THICKNESS AND MATERIAL 3%" MICAR-1A 2X 1" & Alum 3 X 1/2												
WEATHER CLEAR TEMP 92 START TIME 2:11 PM STOP TIME 4:25 PM												
PILE DATA												
MANUFACTURED BY DURASHRESS T.B.M./B.M. ELEV M/P GROUND ROD READ N/A												
DATE CAST $3/27/13$ ROD READ N/A PILE HEAD ROD READ N/A												
MANUFACTURER'S PILE NO. $315774-6$ H.I. M/A PILE HEAD ELEV. 69.72	234											
PILE HEAD CHAMFER $3/4$ \times 3 PILE TIP ELEV. $-3/2$ \otimes 0.5												
PILE TIP CHAMFER 3/2 GROUND ELEV. 24												
QUALIFED INSPECTOR'S NAME: $\underline{PP11c} Accorry Pr2P11c + (12) + (1$												
H H H H H H H H H H H H H H H H H H H	BUILD UP											
UNDER CONTROL COLUCIENCIAL CONTROL COLUCIENCIAL CONTROL COLUCIENCIAL CONTROL COLUCIENCIAL CONTROL CONT	ACTUAL											
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6,000											
NOTES (1) FUELDOSSURE 12 OF B FUEL PRESSURES 350 FSI												
DE LONGERENT CONTRACTOR DE LONGERENTE DE LONGERENTE												
CIFUELPRESSURFISOPSE (DINEWFILE CUSTION)												
WIFUELPRESSURG 200PST (12) STOPPED TO ATTACK PDALKADS												
STUEIPRESSURES 200PST 3 STOPPOD TO CLANGE PILE CUSKIDN												
STUCIPROSTRUS 300 PSI (4) STOPPOD TO MARK TACKOS ONATO	1											
(Sator Section Section Contraction Contrac												
For Trainee experience evidence only:												
For Trainee experience evidence only: Name of CTQP Trainee being supervised by the Qualified Inspector:CTQP Trainee												
For Trainee experience evidence only: Name of CTQP Trainee being supervised by the Qualified Inspector: CTQP Trainee I certify the Pile Driving Record accuracy and that the named above Trainee has observed the full pile Installation:												
For Trainee experience evidence only: Name of CTQP Trainee being supervised by the Qualified Inspector: CTQP Trainee I certify the Pile Driving Record accuracy and that the named above Trainee has observed the full pile Installation: Output the Pile Driving Record accuracy and that the named above Trainee has observed the full pile Installation:												

Page No. 2/2

PILE DRIVING LOG

700-010-60 Construction 11/11

4.25

Date	12 010	255114	c t	12		1									-
Struc	ture N	10. 7	202	01		Bent	/Pier N	VO. 3	-2		Pi	le No.	1		
			2										~~~~~		
Depth	Blows	Stroke/ Pressure	Note No.	Depth	Blows	Stroke? Pressure	Note No.	Depth	Blows	Stroke/ Pressure	Note No.	Depth	Blows	Stroke/ Pressure	Nute No.
0-1				33-31	40	5.78	a	66-67	42	8,25	L.]	99-100	120	8:30	6/7
1-2	Cherrysto		-	34-35	46	5.89	1/2	67.68	34	8, 19	4	160.101	145	8,42	1/3
2-3			- The second and a s	35-36	46	5.98	2/1	68-69	37	8.72	4	101-101.5	.97	8.90	9/14
3-4				36-37	82	5.16	1	69-70	47-	8.5	t].	101'7"	18	2.40	9
4-5			iter	37-38	101	5.15	}	70-71	43	8,06	4	101/84	19	9.40	2/15
5-6				38-34	99	5.2.1) '	71-72	49	8,05	1/3				
6-7		\bigotimes	and a sume	39-46	103	5,34	1/12/2	72-73	37	7.39	1/4				
7-8		\bigcirc		40-411	68	6,10	43	73-74	513	7,60	4				
8-9			and the second second	41-42	46	7.10	3	74-75	45	8,03	ΕĮ				
9-10		N.		42-2/3	56	7.05	3	75-76	56	8,18	1/5,				
10-11	۳۵ میروند. ۲۰ ا	X		43-44	41	7.15	3/4	76-77	48	8.22	5/6,				
11-12-		Q		44-4/5	43	7.32	4	-17-78	82.	8.30	6/7				
12-13				45-46	43	7,37	4	78-78	82	8.49	7				
13-14				46-47	39	7,38	4	79-8	117	8.71	57/4				
1415	\mathbb{N}		\mathbf{V}	47-48	44	7,46	<u>u</u>	80-81	140	8.83	8/9,				
15-16	(BODDiska)	11	-	48.49	44	7.36	6.	81-82	司母3	8:65	3/10				
16-12		(,)		48-50	50	7,52	L	82-85	155	9.26	500				
17-18	Charles and the second	(/)	and a second	50-51	52-	7.50	1	83-84	1.08	9,25	500				
18-19	- Carlonana		ت من الم	51-52	53	7.8C	L	84-85	105	9,18	10				
19-20		Li)		5253	47	7.93	4	85-86	.97	9,12.	19				
20-21		2)	1000 Carlos Carl	53-54	43	8.08-	4	86-87	77	9.04	10				
21-22		Q		54-55	44	7.88-	4	87-88	65	9:06	10				
22-23		. {		55-56	45	8.11	4	88-87	66	9,62-	9/3				
23-24	XV.	.\/	V	56-57	53	7.96	9	88-90	70	7.73	3/9				
24-25	48	4.7	1.1/1	5758	:12-	801	4	70-91	82.	7,52	Ц			-	
25-26	43	S.O	ł	58-59	45	8,10	4	91-92	53	8,62-	4			·.	
26-27	49.	5.2		59-60	94	8.08	14	??.\$?	65	8.26	12-				
27-28	48	5.5	1	60-61	47	7,93	4	?>~??	86	7.90	4/13/11				
28-29	24	55	ł	61-62	37	\$.36	4	24-95	78'	7.88	4				
29-30	.31	5.53	1	62.63	45	8,26	1.1	95.96	81	7.87	4				
30-31	33	5.64	1	63-61	39	8.24	4	96-97	86	7.81	4				
31-32	32	5.76	1	64.65	42-	8.13	4	97-98	77	7.20	4		_		
32-33	33	5.82		6566	44	8.09	4	18-99	100	7.92.	1/6				

Start (AILPA at test Port 222-155 Colomor File custon & 2:30Por 2:49 Por Competent (Di 12% 2522, Blows) Colomor File custon & 2:30Por 2:49 Por Competence) To 12% 2522, Blows Colomor File custon & 2:30Por 2:49 Por Competence (Di 12% 2522, Blows) Colomor File Custon & 2:30Por 2:49 Por Competence (Di 12% 2522, Blows) Colomor File Custon & 2:30Por 2:49 Por Competence (Di 12% 2522, Blows) Colomor File Custon & 2:30Por 2:49 Por Competence (Di 12% 2522, Blows)

4.11 41.79. 500 818100

EDC DATA AND REPORT BY APPLIED FOUNDATION TESTING, INC.

FSU Carbon Fiber Research_790206_End Bent 31_Pile1_DOT SessionReport.xls

SmartPile[™] EDC REPORT

																					Tin Preload	Delta (uStrain)	-54.2	0.6	0.3	5.2	-7.2	-3.9 -	0.6-	-5.1	-4.7	-5.1	-5.4	-3.3	-4.4	-6.3	-5.4	-9.0	ο.0 •	-0	-5.4
																					Ton Preload	Delta (uStrain)	-27.4	-2.0	-1.6		-1.1	-0.4	C.U-	-0.5	-0.5	0.3	0.7	1.0	2.4	2.7	3.0	3.9	0.X	9.4.6 4.6	2.9
			Feet	Feet	inches	inches	inches	inches	Incnes z	inches 2		Feet/sec				Tons	lons Feet	Feet	Feet	r (e.g. Tension)		MPI	94.2	95.8	100.0	100.0	97.3	97.7	90.U 07 0	98.4	0.66	0.66	0.66	99.4 100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	mation																		e	therwise in heade	Max Tension	(Ksi)	1.1	1.2	1.2	4 C	1.3	1.2		5.1	1.3	1.3	1.3	1.3	5 2	1.2	1.2	1.2	<u>، د</u>	5 <u>5</u>	1.2
Pile 1	Pile Infor	ind Bent 31	00		8	0 4	4	88	0/	76	040.023332 145	3900	4.	.92 AI SE					0.A0.96.30.2D.4: 17	low or indicated o	Compression	(Ksi)	0.3	0.3	0.3	0.0	0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.6	0.0	0.7	0.7	0.8	0.0	0.0	0.6
End Bent 31		Structure E	Pile Length 1	ker Increment 1	ker Increment 1 de to Pile Ton 4	ge to Pile Tip 2	d Dimension 2/	ge to Pile Tip 5	-Section Area o	Section Area 5	s or Elasticity o lecific Weight ()	Wave Speed 1	ng Coefficient 0	il Rate Factor 0	Hammer	In Resistance	Tip Elevation 1	orm Elevation 1	Off Elevation 1 Radio 1 ID 0 1 FW Version 5	t unless a single bl	Top	(Ksi)	1.4	1.7	1.8	<u>, 6</u>	1.9	1.9	<u>م -</u>	2.0	2.0	2.0	2.1	2.1	2.0	2.0	2.1	2.2	2.4	53 5	2.3
			:	Pile Mari	set Check Mari Ton Ga	Tip Ga		Mid Ga	1 op Cross	Tip Cross	Concrete Sr		ixed Jc Dampir	Pile Tip UP So		Nominal Bearir	Minimum	Jet/PreFe	Pile Cut Radio	ified displacemen	Mave Sneed	(Feet/sec)	14679.9	14487.3	14438.4	14348.7	14325.3	14304.0	14272.1	14205.4	14176.8	14163.2	14137.9	14122.4	14106.9	14117.8	14124.0	14121.7	0 30141	14107.6	14083.1
er Research																				**Average at ident	I IF Canacity	(Kips)	130.0	223.8	257.2	201.12	233.0	212.7	203.0	176.3	186.4	194.7	208.2	208.0	251.8	305.3	353.5	349.0	41/.4 205 0	321.4	248.5
งัป Carbon Fib ata Analysis																				-	Fived Jr	Capacity (Kips)	137.6	197.4	218.7	236.4	218.3	198.1	170.6	155.7	148.3	151.8	168.9	184.0	215.7	218.5	229.0	254.1	204.0	252.5	276.4
FS Professional D																				46:21		Energy (Kips-ft)	19.0	21.7	22.2	23.1	25.3	26.1	21.2	28.6	30.4	31.1	31.4	31.6	29.3	29.6	30.5	31.9	30.3 20.0	37.5	37.5
.041b Jone <mark>d, Seek Further</mark>	rmation	n Testina	ß					:	ormation	r Research				r Research Piles	bu	1		va	1	3 to 01-23-2014 16:4	Stroke/BDM	(Feet)	4.5	5.7	5.7	5.8	6.0	5.9	0.0	6.0	6.2	6.2	6.4	6.4 6.5	6.2	6.2	6.4	6.6	7.4	7.3	7.2
teview Version 4 ection Levels: N	User Infor	Don Robertson	Green Cove Sprin	Florida	32043 000F1 000001	9042841337			Project Into	SU Carbon Fiber	Jelanu Fi	05	108464-1-52-01	-SU Carbon Fiber	-4 Wildlife Crossi			Note		01-23-2014 14:37:06	Blows ner Font	to Disp	10	5	99	2	7	7	0	10	12	13	15	13	21	25	26	26	07	27	18
SmartPile(TM) F sabled Error Det ated Mechanica		CEI Name [City	State	ZIP . Sertification ID (hone Number 9				Project Name F	State F	cuntv/District [Number (DOT) 4	oct Description	Description	Latitude	Longitude			Drive Duration:From		Blow Number	-	17	23	36	43	50	00	80	92	105	120	133	172	197	223	249	5/7 G/7	332	350
Dis *Warning: Repe		č)									0	Project	Proje						 L	Displacement	(Feet)	-22.00	-24.00	-25.00	-27 00	-28.00	-29.00	-30.00	-32.00	-33.00	-34.00	-35.00	-36.00	-38.00	-39.00	-40.00	-41.00	42.00	-44.00	-45.00

Page 1 of 3

			_	_	_				_									_			_	_	_	_				_	_					_		_		_	_	_	_								_				_	_		_
	Tip Preload Delta (uStrain)	-5.9	-4.5	-6.5	-5.8	-6.2	-7.4	-6.5	-8.6	-6.8	-8.7	-11./	-13.0	-13.3	-13.7	-18.2	-21.4	-23.2	-22.9	-27.1	-28.4	-30.1	-32.8	-32.8	-32.2	5.16-	-29.8	-29.4	-30.8	-21.8	-18.2	-2.0	-4.4	-4.9	-4.7	4.4	-5.0	-5.7	-8.4	-11.4	-10.0	-10.7	-11.6	-9.1	-6.8	- 4.4	-1.9	3.1	-1.3	-3.2	-3.6	-2.8	-2.8	2.7	1.2	-0.1
Mathematical process of a state	Top Preload Delta (uStrain)	3.0	3.5	3.3	4.0	3.6	3.6	0.0	4.0	4.7	5.0	5.3 F 0	0.0 6.4	5.5	5.6	6.4	7.2	0.0 7.6	84	8.8	10.3	12.5	14.1	14.1	13.9	13.8	14.2	13.2	13.2	13.7	13.8	14.7	12.9	11.9	12.2	12.1	13.6	14.0	14.7	15.5	16.8 15.6	16.4	18.1	18.9	19.3	10.0	20.8	20.1	20.4	21.6	23.0	21.6	23.0	22.2	23.0	23.0
	MPI	100.0	100.0	99.1	97.1	94.7	91.7	85.2 85.2	83.9	84.1	83.1	81.6	81.0	80.5	80.0	79.5	80.2	81.7	83.3	84.7	85.4	85.9	87.0	87.7	88.U	00.00	89.2	90.5	91.6	92.8	91.5	86.6	85.2	84.9	84.7	80.U 86.1	87.3	87.8	86.4	86.0	80.8 87.0	87.6	88.6	90.3	93.9	97.7	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	0.66	0.99
	Max Tension (Ksi)	1.2	1.2	1.2	1.1	1.1	1.1	1.1	1.2	1.1	1.2	1.3	14	1.3	1.5	1.5	1.4	0.1	- - -	1.4	1.4	1.5	1.5	1.6	0.1	 	1.1	1.0	1.1	0.9	0.9	0.6	0.6	0.6	0.7	0.9		1.1	1.2	1.1	1.3	1.1	1.0	0.9	0.7	0.0 9 0	0.5	0.4	0.5	0.5	0.5	0.4	9.0 7 U	0.4	0.5	0.4
Mathematication Mathematicatitation Mathematicatitatatitatation	Tip Compression (Ksi)	0.6	0.5	0.5	0.5	0.6	0.6	0.0	0.7	0.7	0.8	0.8	0.0	0.8	0.8	0.8	0.8	0.0	0.0	0.7	0.7	0.6	0.6	0.6	G.U	0.0	0.5	0.4	0.4	0.4	0.5	1.1	1.4	1.6	1.6	0.1 7.1	5 4	1.2	1.1	1.1	6.0	0.9	0.8	0.8	0.8	0.0	6.0	1.0	1.0	1.0	1.0	1.0	1.0	0.9	1.0	1.0
Deprindment Density frequest Strong frequest Frequest Frequest Frequest Comparison Frequest Freques	Top Compression (Ksi)	2.3	2.4	2.4	2.3	2.4	2.5	2.4 2.6	2.6	2.7	2.7	8.7 7	0.5	3.0	3.0	3.0	3.1	3.0	3.2	3.2	3.2	3.3	3.2	3.2	3.2	- 08	3.0	2.9	2.7	2.5	2.9	2.9	2.9	3.0	3.0	3.1 2.2	3.3	3.4	3.4	3.5	3.4	3.3	3.2	3.1	3.0	3.0	3.3	3.4	3.4	3.5	3.4	3.5	3.4	3.4	3.6	3.5
Depletement Biow humer Dolp Free Free <td>Wave Speed (Feet/sec)</td> <td>14053.9</td> <td>14058.2</td> <td>14084.3</td> <td>14073.4</td> <td>14038.7</td> <td>14024.2</td> <td>14013.8</td> <td>14008.5</td> <td>13889.1</td> <td>13905.2</td> <td>13905.5</td> <td>13899.9</td> <td>13881.1</td> <td>13864.5</td> <td>13869.3</td> <td>13840.8</td> <td>13769.0</td> <td>137814</td> <td>13801.8</td> <td>13779.4</td> <td>13774.8</td> <td>13779.7</td> <td>13753.7</td> <td>13/38.2</td> <td>13713.6</td> <td>13683.4</td> <td>13701.0</td> <td>13675.9</td> <td>13679.2</td> <td>13651.6</td> <td>13806.1</td> <td>14074.3</td> <td>14149.8</td> <td>14227.2</td> <td>14260.2</td> <td>14093.9</td> <td>14065.2</td> <td>14027.1</td> <td>14024.1</td> <td>14025.1</td> <td>13990.0</td> <td>14026.9</td> <td>14058.8</td> <td>140/6.4</td> <td>13004.0</td> <td>13938.2</td> <td>13921.7</td> <td>13921.9</td> <td>13926.7</td> <td>13926.7</td> <td>13926.7</td> <td>13926./</td> <td>13931.6</td> <td>13931.8</td> <td>13936.5</td>	Wave Speed (Feet/sec)	14053.9	14058.2	14084.3	14073.4	14038.7	14024.2	14013.8	14008.5	13889.1	13905.2	13905.5	13899.9	13881.1	13864.5	13869.3	13840.8	13769.0	137814	13801.8	13779.4	13774.8	13779.7	13753.7	13/38.2	13713.6	13683.4	13701.0	13675.9	13679.2	13651.6	13806.1	14074.3	14149.8	14227.2	14260.2	14093.9	14065.2	14027.1	14024.1	14025.1	13990.0	14026.9	14058.8	140/6.4	13004.0	13938.2	13921.7	13921.9	13926.7	13926.7	13926.7	13926./	13931.6	13931.8	13936.5
Displacement (Feet) Bown humber (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	UF Capacity (Kips)	257.3	285.5	313.1	332.1	349.2	374.7	416.3	490.5	517.8	449.6	0.104	473.9	515.0	531.5	498.9	528.3	563.0	576.3	462.2	551.2	430.2	336.3	346.1	302.08 0.000	402 1	401.0	350.3	310.1	332.0	310.0	715.9	784.1	842.6	883.4	848.U 774.8	762.5	704.8	637.9	587.9	558.4	506.9	506.9	489.7	499.0 E20 E	551.2	572.3	572.0	614.0	609.0	594.0	568.0	0.286	611.0	564.0	614.0
Displacement (Feet) Blow Number (Feet) Blow Ser Ford (Feet) Stroke/BPM (Feet) Renervit (Feet)	Fixed Jc Capacitv (Kips)	307.4	327.4	345.9	354.2	370.0	395.9	431.0	515.8	536.9	492.6	496.9	521.1	557.2	574.1	546.8	578.1	000.0 634.7	649.6	547.1	637.6	540.7	487.5	514.4	0.616	489.7	498.2	498.4	470.1	485.0	486.5	773.9	838.4	877.3	898.3	804.2 786 5	787.4	736.4	667.7	625.0	613.4 608.5	541.6	548.6	567.8	637.6 600.6	711 6	746.1	726.0	735.0	737.0	708.0	718.0	690.0	733.0	730.0	731.0
Displacement (Feet) Blows per Ford (Feet) Stroke (Feet) Stroke (Feet) Stroke (Feet) Stroke (Feet) 47.00 369 17 7.3 7.3 47.00 369 22 7.4 47.00 369 22 7.4 48.00 413 22 7.4 5100 478 23 7.9 5100 478 23 7.9 5100 478 23 8.8 5500 536 30 8.8 5500 536 30 8.8 5500 536 30 8.8 5500 572 31 8.8 5500 626 32 8.7 5500 627 31 92 6500 839 33 8.9 6500 801 32 8.7 7100 1126 35 91	Enerav (Kips-ft)	36.9	37.3	36.8	35.4	37.6	39.1	30.4	44.5	43.4	47.0	48.2	40.2	48.3	49.1	49.5	48.4	49.7	48.6	50.4	48.4	50.4	51.5	51.0	48./	40.0	41.0	40.8	38.2	36.7	42.6	43.9	45.6	46.6	46.5	41.8	50.2	50.8	51.0	50.4	50.0 50.0	48.7	46.6	44.9	44.3	42.0	44.3	45.0	46.7	47.1	45.1	45.3	43.8	45.7	48.4	46.7
Displacement (Feet) Blow Number Blow Number (Feet) Blow Ser Foot (Feet) Blow Ser Foot (Feet) -47.00 367 17 -46.00 367 17 -46.00 367 17 -46.00 367 17 -46.00 367 17 -46.00 473 22 -50.00 455 23 -51.00 478 23 -51.00 478 23 -51.00 478 23 -51.00 478 23 -51.00 478 23 -55.00 594 23 -56.00 572 30 -56.00 677 31 -56.00 677 31 -56.00 7147 25 -56.00 677 31 -56.00 7147 27 -57.00 1126 35 -71.00 1126 36 -71.00 1274 27	Stroke/BPM (Feet)	7.3	7.4	7.5	7.4	7.7	7.9	8.4	8.8	8.8	8.7	8.8	8.7	8.8	8.8	8.8	8.8	0.9	1.6	9.1	9.2	9.4	9.4	9.3	9.4	9.5	9.3	9.4	9.2	8.4	8.0 0.0	0.6	9.1	9.2	9.3	9.4	9.5	9.5	9.5	9.5	9.5	9.4	9.5	9.5	9./	9./ 0.8	6.6	9.9	10.1	9.8	9.8	9.7	9.6	9.8	9.7	9.7
Displacement Blow Number -46.00 367 -47.00 367 -46.00 367 -47.00 367 -46.00 367 -47.00 369 -48.00 411 -48.00 47.33 -50.00 47.33 -51.00 47.33 -55.00 566 -51.00 478 -55.00 574 -55.00 594 -55.00 594 -56.00 667 -56.00 677 -57.00 677 -56.00 699 -61.00 774 -61.00 774 -61.00 774 -77.00 1228 -77.00 1282 -77.00 1282 -77.00 1203 -77.00 1203 -77.00 1228 -77.00 1228 -77.00 1228 -77.00	Blows per Foot to Disp	17	22	22	22	22	23	30	36	22	32	31	30	28	27	30	35	30	33	30	25	35	35	36	34 2F	42	39	40	35	40	63	67	80	80	95	88	5 88	54	59	58	54 51	50	50	28	5/	00 99	46									
Displacement (F-et) (F-e) (F	Blow Number	367	389	411	433	455	478	536	572	594	626	69/	719	747	774	804	839	800	931	961	986	1021	1056	1092	1120	1203	1242	1282	1320	1360	1423	1560	1640	1720	1815	1903	2075	2129	2188	2246	2300 2351	2401	2451	2509	2566	2024	2736	2736	2737	2738	2739	2740	2/41	2743	2744	2745
2 • 0	Displacement (Feet)	-46.00	-47.00	-48.00	-49.00	-50.00	-51.00	-53.00	-54.00	-55.00	-56.00	00.76-	-59.00	-60.00	-61.00	-62.00	-63.00	-04.00	90.00	-67.00	-68.00	-69.00	-70.00	-71.00	-/2.00	-74 00	-75.00	-76.00	-77.00	-78.00	- 19.00	-80.00	-82.00	-83.00	-84.00	00.68-	-87.00	-88.00	-89.00	00.06-	-92.00	-93.00	-94.00	-95.00	-96.00	00.78-	00.06-	00.66-	-99.02	-99.04	-99.07	-99.09	-99.11	-99.15	-99.17	-99.20

FSU Carbon Fiber Research_790206_End Bent 31_Pile1_DOT SessionReport.xls

Page 2 of 3

3/16/14

Tip Preload	Delta (uStrain)	0.1	-0.5	0.5	-0.2	1.2	-4.7	2.3	-0.6	-1.6	0.5	0.5	-0.2	0.5	1.2	0.1	2.3	1.6	0.9	-1.7	2.0	2.0	3.8	-0.2	2.7	2.7	0.1	0.9	-1.4	-5.0	-4.9
Top Preload	Delta (uStrain)	24.5	23.5	24.5	23.6	23.0	23.8	24.1	24.5	24.5	24.5	23.0	24.5	24.5	24.5	24.5	24.5	25.5	24.5	27.4	28.2	29.6	30.4	30.9	30.4	31.8	33.3	34.8	34.8	35.8	34.8
	MPI	0.66	0.66	0.66	0.66	0.66	0.66	98.0	0.66	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	97.0	98.0	97.0	97.0	97.0	97.0	97.0	97.0	97.0	96.0	96.0
Max Tension	(Ksi)	0.5	0.4	0.6	0.4	0.5	0.5	0.5	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.6	0.4	0.5	0.6	0.6	0.6	0.6	0.5	0.5	0.5	0.5	0.5	0.8	0.2	0.0	0.0
Tip Compression	(Ksi)	1.0	1.0	1.1	1.0	1.0	1.1	1.1	1.0	1.1	1.1	1.1	1.1	1.1	1.0	1.0	1.0	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	0.7	0.5	0.3
Top Compression	(Ksi)	3.6	3.5	3.6	3.5	3.6	3.5	3.6	3.7	3.6	3.7	3.7	3.7	3.6	3.7	3.6	3.5	3.7	3.8	3.7	3.8	3.7	3.8	3.8	3.8	3.8	3.9	4.0	2.5	1.4	0.8
Wave Speed	(Feet/sec)	13937.0	13936.5	13937.0	13936.5	13937.0	13931.6	13931.8	13931.6	13931.8	13931.6	13931.8	13926.7	13926.7	13926.7	13926.7	13921.8	13921.5	13921.8	13916.4	13912.0	13911.2	13912.0	13911.2	13912.0	13911.2	13912.0	13916.4	13912.0	13911.2	13899.3
UF Capacity	(Kips)	612.0	599.0	602.0	604.0	593.0	602.0	615.0	616.0	641.0	580.0	637.0	630.0	637.0	623.0	625.0	626.0	654.0	661.0	0.699	664.0	625.0	638.0	624.0	648.0	628.0	647.0	606.0	454.0	291.0	177.0
Fixed Jc	Capacity (Kips)	735.0	713.0	700.0	706.0	695.0	700.0	695.0	720.0	729.0	747.0	734.0	731.0	739.0	739.0	725.0	709.0	746.0	742.0	777.0	780.0	782.0	751.0	742.0	749.0	744.0	755.0	697.0	595.0	393.0	202.0
	Energy (Kips-ft)	47.3	47.1	48.2	46.3	47.8	47.0	48.2	49.2	48.3	48.1	49.3	48.2	47.9	48.6	47.4	46.2	49.0	49.9	48.0	49.3	45.4	51.5	54.4	54.0	53.4	54.3	51.8	26.5	13.8	11.3
Stroke/BPM	(Feet)	9.6	6.6	9.8	9.6	9.4	9.5	9.6	9.6	9.7	9.8	6.6	6.6	9.8	9.7	9.8	9.7	9.6	9.8	6.6	9.8	9.8	9.7	10.0	9.7	9.7	9.6	9.8	8.5	6.5	4.5
Blows per Foot	to Disp																														40
	Blow Number	2746	2747	2748	2749	2750	2751	2752	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770	2771	2772	2773	2774	2775
Displacement	(Feet)	-99.22	-99.24	-99.26	-99.28	-99.30	-99.33	-99.35	-99.37	-99.39	-99.41	-99.43	-99.46	-99.48	-99.50	-99.52	-99.54	-99.57	-99.59	-99.61	-99.63	-99.65	-99.67	-99.70	-99.72	-99.74	-99.76	-99.78	-99.80	-99.83	-99.85

F SessionReport.xls
DO
Pile1.
Bent 31
Ĕ
790206
Research
Fiber
Carbon
FSU

SMARTPILE

SmartPile[™] EDC REPORT

PDA DATA AND REPORT BY GRL ENGINEERS, INC.

Subject: FW: PDA Testing Results - CFCC Piles
From: "Potter, William" <William.Potter@dot.state.fl.us>
Date: Tue, 28 Jan 2014 16:18:49 +0000
To: Michelle Roddenberry <mroddenberry@fsu.edu>

fyi

Will Potter, P.E. Florida Department of Transportation M. H. Ansley Structures Research Center 850-921-7106

From: Herrera, Rodrigo Sent: Monday, January 27, 2014 8:10 AM To: Robertson, Robert; Jones, Larry; Fallaha, Sam; Potter, William Subject: FW: PDA Testing Results – CFCC Piles

FYI

Rodrigo Herrera, P.E. Asst. State Geotechnical Engineer Florida Department of Transportation 605 Suwannee Street, MS 33 Tallahassee, FL 32399–0450 Phone: (850) 414–4377

From: MHGRLFL@aol.com [mailto:MHGRLFL@aol.com] Sent: Sunday, January 26, 2014 10:10 PM To: Hipworth, Robert; Herrera, Rodrigo Cc: grl-fl@grlengineers.com Subject: PDA Testing Results - CFCC Piles

Gentlemen,

This report presents the results of the Pile Driving Analyzer® (PDA) dynamic pile testing performed during the installation of two 24-inch square, 100 feet long, experimental prestressed concrete piles utilizing CFCC (carbon fiber composite cable) prestressing strands and spiral reinforcements. Information regarding the structural pile design and specifics about these research piles may be found in the FDOT's Structures Office documents. Two each reusable strain transducers and accelerometers were bolted on opposite pile sides five feet below each pile top for the PDA data acquisition. An APE D 46-42 open-ended (i.e., single-acting) diesel hammer with a ram weight of 10.1 kips was used to drive and test the piles. A pile driving inspector on site monitored the pile installations and kept pile driving blow count logs. The piles were driven at the I-4 widening project site in District 5 close to the Deer Crossing Bridge No.

790207 near End Bent 3–1 in the vicinity of soil boring DC–1. The two piles were referred to as: CFCC West Pile N1 and CFCC East Pile N2.

The attached pdf file contains the PDA testing results, along with copies of the inspector's pile driving logs (as provided to us) and the soil boring. The PDA w01 data files are too large to attach here and can be obtained by the following weblinks:

CFCC EAST PILE N2-MH.w01

https://grlfl.pile.com:5001/fbsharing/60kPljez

CFCC WEST PILE N1-MH.w01

https://grlfl.pile.com:5001/fbsharing/u1eivl00

These links will be available for one month. The server will ask for a password, which is fdot (all lowercase).

The PDA results in the attached file are presented in table and graph forms as functions of hammer blow number, pile "penetration" depth below the template reference used by the inspector in recording the pile driving blow counts, and pile tip elevations. The references had reported elevations of approximately +53 feet, and were approximately seven feet above existing ground surface. The results include:

CSX: maximum measured pile compressing stress at the gages (averaged from the two transducers at opposite pile faces) located five feet below pile top, ksi,

CSI: maximum measured pile compressing stress by the higher of the two individual gages located five feet below pile top, ksi,

CSB: maximum computed pile toe compression stresses, ksi,

TSX: maximum computed pile tension stress throughout pile length, ksi,

STK: hammer ram stroke height, ft,

EMX: maximum energy transferred to the pile top at the gages location, kip-ft,

BTA: pile integrity assessment factor,

RX0: total soil resistance to pile driving (static and dynamic), kips,

RX5: pile static ultimate load bearing capacity computed with a Case Damping Factor Jc = 0.5 based on correlations with CAPWAP data analyses with the RMX Case Method equation obtained from the Test Piles driving program for the production work for the bridge construction, kips.

The data indicated a pile material one-dimensional stresswave speed of 14,050 feet/second, which corresponds to a dynamic elastic modulus of 6,178 ksi assuming a material unit weight of 145 lbs/ft3.

Pile N1 was driven on January 23rd afternoon. Pile top cushion consisted of sheets of plywood with an initial total thickness of 8.75 inches. The pile cushion was changes when the pile had a "penetration" 77 feet below reference. The pile was driven to a final tip elevation of -47 feet. Pile driving was stopped due to concrete spalling at pile top. The pile was subjected to a total of 2,765 hammer blows.

Pile N2 was driven during the morning of January 24th. Pile top cushion consisted of sheets of plywood with a total thickness of 6 The pile cushion was changed at pile "penetrations" below inches. reference of 70, 84, and 93 feet. The pile was driven to a final tip elevation of -51 feet. Pile driving was stopped due to concrete spalling at pile top. The pile was subjected to a total of 3,139 hammer blows. When the pile was at "penetration" below reference of approximately 55 feet, two small cracks (a few feet apart along pile length) were observed in the pile at about mid pile length. These minor cracks evidently did not produce stresswave reflections of the type that would've been characteristically typically present in the test records within the first time cycle of strtesswave travel in the pile. Their presence in the pile may possibly be surmised from the data by the minor distortion to the 2L/c reflection characteristics, reduction in the overall stresswave speed, and overall trend and characteristics in the wave-up records. The pile was subjected to about 2500 additional hammer blows with high stroke heights and pile stress levels after the cracks were observed in the pile without further indications of pile damage.

We appreciate the opportunity to provide our PDA field testing services during the field pile driving phase of these interesting experimental piles. Please confirm receipt of this e-mail and the successful downloading of the data files by the provided weblinks, and let us know if you have any questions or if we may be of further assistance.

Regards,

Mohamad Hussein, P.E. Marty Bixler, P.E. GRL Engineers, Inc.

Attachments: PileDrivingAnalyzerPDATestingResultsPilesN1andN2.pdf 797 KB

GRL Engineers, Inc.

Pile Driving Analyzer® (PDA) Dynamic Pile Testing Results Pile Driving Logs (as provided to us by the field inspector) Site Layout and Soil Boring

24-inch square precast concrete piles with CFCC strands and spirals

Pile N1 Pile N2

Test date: 23-Jan-2014

GRL I Case	Engineers Method &	, Inc. iCAP® F	Results			PDIP	LOT Ve	er. 2014.	1 - Printe	Page ⁻ d: 25-Jar	1 of 11 1-2014
I-4 DE <u>OP: G</u>	ER CROS	SSING B	ridge No	. 790207	- CFCC	WEST F	PILE N1		APE D4 Test dat	6-42 HAI e: 23-Jar	MMER n-2014
AR:	576.00 ir	1^2								SP: 0.14	5 k/ft3
LE: WS: 1	95.00 ft	s								EM: 6,17 JC: 0.5	8 KSI 0
CSX:	Max Mea	sured Co	ompr. Str	ess		EM	X: Max	Transfe	rred Ener	gy	
CSI:	Max F1 o	r F2 Con	npr. Stree	SS		BTA	A: BET	A Integri	ty Factor		•
CSB:	Compres	sion Stre	ess at Bot	ttom		RX(): Max	Case M	ethod Ca	oacity (J	C=0)
STK:	O.E. Dies	sel Hamn	ner Strok	e			D. IVIAX	Case M	ethoù Ca	Dacity (J	0=0.5)
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
5	5 2	AV5	1.05	1.27	0.17	0.65	5.37	19.77	81.6	97	0
10) /	AV5	1.6/	1.93	0.34	1.11	5.83	22.45	93.8	204	8
10) 12		1.74	2.01	0.37	1.18	5.72	21.77	98.0	220	23 57
20	12 12		1.00	2.07	0.30	1.20	5.04 5.75	22.30	100.0	227	37 81
30) 12	AV5	1.86	2.03	0.33	1.27	5.88	22.07	96.0	249	95
35	, O	AV5	1.82	2.04	0.46	1.23	5.77	21.60	97.8	273	141
40) 9	AV5	1.91	2.14	0.52	1.27	5.95	24.04	95.2	310	163
45	5 10	AV5	1.90	2.14	0.52	1.29	5.99	22.60	100.0	312	159
50) 10	AV5	1.93	2.17	0.52	1.31	5.99	22.71	100.0	317	166
55	5 10	AV5	1.96	2.20	0.54	1.32	6.08	23.55	100.0	328	166
60) 10	AV5	1.94	2.18	0.54	1.29	5.97	22.79	100.0	327	163
65) 12		1.96	2.20	0.54	1.29	6.01 6.10	22.79	100.0	334	176
70	12		1.99	2.22	0.56	1.30	6.10	23.37	100.0	343 330	175
80) 12		2.03	2.13	0.55	1.20	6 14	22.03	100.0	359	182
85	5 12	AV5	2.06	2.28	0.61	1.29	6.28	25.56	100.0	370	185
90) 13	AV5	2.02	2.24	0.61	1.25	6.12	24.15	100.0	374	200
95	5 13	AV5	2.06	2.28	0.64	1.27	6.23	25.43	100.0	388	204
100) 13	AV5	2.08	2.31	0.64	1.28	6.29	25.45	100.0	393	214
105	5 13	AV5	2.10	2.33	0.65	1.28	6.38	25.89	100.0	400	221
110) 13	AV5	2.16	2.43	0.69	1.31	6.54	27.77	100.0	420	233
110) ID) 15		2.11	2.30	0.08	1.20	6.33	20.10	100.0	414	238
125	, 15 ; 15		2.15	2.33	0.70	1.20	6 50	26.29	100.0	420	255
130) 16	AV5	2.14	2.41	0.72	1.26	6.46	26.30	100.0	438	256
135	5 16	AV5	2.18	2.46	0.74	1.27	6.54	27.12	100.0	454	267
140) 16	AV5	2.17	2.45	0.75	1.26	6.53	27.07	100.0	457	269
145	5 23	AV5	2.15	2.44	0.76	1.24	6.43	26.68	100.0	461	276
150) 23	AV5	2.11	2.37	0.76	1.24	6.43	25.50	100.0	461	277
155	o 23	AV5	2.11	2.31	0.90	1.12	6.62	25.44	100.0	536	339
160	23		2.08	2.30	0.86	1.21	6.31 6.22	25.31	100.0	501 494	319
170) 23) 21		2.10	2.34	0.03	1.24	6.26	25.70	100.0	404 480	303
175	5 21	AV5	2.00	2.34	0.84	1.22	6.31	25.34	100.0	492	308
180	21	AV5	2.05	2.32	0.84	1.17	6.20	24.40	100.0	493	316
185	5 21	AV5	2.09	2.35	0.86	1.19	6.33	25.24	100.0	504	315
190) 25	AV5	2.05	2.30	0.84	1.15	6.16	24.06	100.0	497	313
195	5 25	AV5	2.11	2.36	0.88	1.18	6.34	25.42	100.0	518	322
200	25		2.10	2.35	0.89	1.1/	6.37	25.37	100.0	524 540	326
200	20) 25	ΑV5 Δ\/5	2.10 2.10	८.41 २ २२	0.93 0 Q1	⊥.∠⊺ 1 17	0.00	20.00 24 82	100.0	040 536	341
215	5 29	AV5	2.08	2.32	0.92	1.11	6.31	24.43	100.0	539	330

GRL Engineers, Inc.Page 2 of 11Case Method & iCAP® ResultsPDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEER OP: GRL	CROS -MGB	SSING Br	idge No.	790207	- CFCC	WEST	PILE N1		APE D4 Test date	6-42 HAI ə: 23-Jar	MMER n-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
220	29	AV5	2.15	2.39	0.96	1.15	6.53	26.15	100.0	562	339
225	29	AV5	2.13	2.39	0.96	1.13	6.46	25.56	100.0	562	337
230	29	AV5	2.20	2.47	0.97	1.15	6.63	26.59	100.0	572	345
235	29	AV5	2.18	2.45	0.97	1.13	6.62	26.16	100.0	575	350
240	29	AV5	2.24	2.51	1.00	1.17	6.77	27.48	100.0	592	363
245	25	AV5	2.36	2.62	1.04	1.24	7.24	30.58	100.0	617	369
250	25	AV5	2.41	2.68	1.04	1.28	7.43	31.86	100.0	623	372
255	25	AV5	2.44	2.73	1.08	1.30	7.56	33.02	100.0	635	372
260	25	AV5	2.46	2.74	1.09	1.31	7.57	33.30	100.0	642	377
265	25	AV5	2.41	2.69	1.07	1.27	7.35	31.82	100.0	631	375
270	24	AV5	2.43	2.71	1.08	1.28	7.40	32.30	100.0	639	380
275	24	AV5	2.48	2.78	1.11	1.31	7.63	33.95	100.0	653	385
280	24	AV5	2.45	2.75	1.10	1.28	7.46	32.88	100.0	647	391
285	24	AV5	2.45	2.75	1.10	1.27	7.48	32.81	100.0	649	396
290	24	AV5	2.43	2.73	1.09	1.26	7.42	32.54	100.0	641	387
295	24	AV5	2.46	2.76	1.07	1.28	7.49	32.90	100.0	642	391
300	24		2.43	2.74	1.07	1.26	7.39	32.54	100.0	634	386
305	24	AV5	2.42	2.72	1.06	1.25	7.39	32.32	100.0	628	384
310	24		2.38	2.07	1.04	1.22	7.21	31.32	100.0	600	380
310	21		2.42	2.73	1.00	1.20	7.30	32.00	100.0	614	200
320	21	AV5 AV5	2.39	2.70	1.04	1.20	7.20	31.03	100.0	611	382
320	21		2.40	2.72	0.97	1.25	7.32	31.92	100.0	599	382
335	21		2.00	2.71	1 00	1.25	7.02	31 53	100.0	600	379
340	20	AV5	2.00	2 70	1.00	1.20	7.20	31 50	100.0	598	378
345	20	AV5	2.39	2 73	1.01	1 26	7.32	31.95	100.0	602	384
350	20	AV5	2.43	2.78	1.02	1.29	7.45	32.75	100.0	611	396
355	20	AV5	2.43	2.80	1.02	1.29	7.48	32.53	100.0	618	410
360	20	AV5	2.37	2.75	0.99	1.23	7.25	30.68	100.0	602	401
365	20	AV5	2.42	2.81	1.02	1.26	7.43	32.24	100.0	620	407
370	20	AV5	2.43	2.82	1.02	1.28	7.50	32.71	100.0	623	411
375	20	AV5	2.43	2.82	1.01	1.28	7.45	32.42	100.0	621	415
380	21	AV5	2.43	2.81	1.00	1.27	7.42	32.18	100.0	622	419
385	21	AV5	2.46	2.85	1.01	1.28	7.60	32.97	100.0	633	428
390	21	AV5	2.44	2.83	1.00	1.25	7.53	32.35	100.0	632	432
395	21	AV5	2.42	2.83	1.00	1.24	7.50	32.09	100.0	628	423
400	22	AV5	2.41	2.81	1.00	1.22	7.45	31.59	100.0	630	424
405	22	AV5	2.43	2.84	1.01	1.23	7.51	32.21	100.0	634	426
410	22	AV5	2.39	2.79	1.00	1.20	7.39	31.15	100.0	628	426
415	22	AV5	2.40	2.81	1.01	1.21	7.45	31.62	100.0	635	432
420	23	AV5	2.41	2.81	1.02	1.20	7.49	31.70	100.0	639	436
420	23 22		2.30	2.70	1.01	1.10	7.32	30.27 21 72	100.0	030	441
430	23		2.41	2.00	1.05	1.19	7.55	31.73	100.0	650	451
433	23		2.45	2.02	1.05	1.21	7.00	32.03	100.0	671	404
445	20	AV5	2.40	2.00	1.07	1.24	7.89	34.37	100.0	677	466
450	24	AV5	2 48	2.86	1.08	1 22	7 81	33 72	100.0	676	470
455	24	AV5	2.50	2.88	1.09	1.22	7,86	34.23	100.0	684	476
460	24	AV5	2.53	2.90	1.11	1.23	7.99	34.87	100.0	696	489
465	24	AV5	2.53	2.91	1.11	1.22	7.97	34.69	100.0	700	491
470	27	AV5	2.53	2.84	1.09	1.21	8.04	34.13	100.0	710	501
475	27	AV5	2.50	2.71	1.10	1.16	7.99	33.84	100.0	713	499

GRL Engineers, Inc.Page 3 of 11Case Method & iCAP® ResultsPDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEF OP: GRL	R CROS MGB	SSING B	ridge No.	790207	- CFCC	WEST F	PILE N1		APE D4 Test dat	46-42 HA te: 23-Ja	MMER n-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
480	27	AV5	2.51	2.68	1.12	1.16	8.00	34.31	100.Ó	716	501
485	27	AV5	2.51	2.68	1.13	1.16	8.03	34.33	100.0	725	506
490	27	AV5	2.49	2.72	1.13	1.13	7.96	33.78	100.0	731	511
495	29	AV5	2.50	2.74	1.14	1.13	7.96	33.89	100.0	743	520
500	29	AV5	2.56	2.82	1.16	1.18	8.16	35.15	100.0	754	521
505	29	AV5	2.56	2.82	1.15	1.18	8.15	34.41	100.0	761	528
510	29	AV5	2.60	2.88	1.17	1.22	8.30	36.20	100.0	759	523
515	29	AV5	2.64	2.96	1.19	1.25	8.47	37.58	100.0	773	530
520	29	AV5	2.66	3.00	1.19	1.26	8.53	38.23	100.0	776	530
525	28	AV5	2.67	2.99	1.19	1.26	8.51	38.02	100.0	778	531
530	28	AV5	2.65	2.98	1.19	1.25	8.48	37.95	100.0	781	530
535	28	AV5	2.65	2.98	1.20	1.25	8.48	37.95	100.0	786	532
540	28	AV5	2.66	3.19	1.20	1.30	8.71	39.39	100.0	793	538
545	28	AV5	2.64	3.30	1.24	1.18	8.72	38.75	100.0	821	546
550	31	AV5	2.68	3.36	1.49	1.18	8.94	40.11	100.0	987	575
557	31	AV5	2.70	3.34	1.73	1.19	9.01	41.40	100.0	1.145	623
562	31	AV5	2.68	3.25	1.75	1.19	8.88	40.32	100.0	1,151	618
567	31	AV5	2.74	3.25	1.71	1.25	9.02	40.75	100.0	1,138	615
572	31	AV5	2.72	3.21	1.61	1.21	8.86	39.78	100.0	1,075	596
577	31	AV5	2.72	3.21	1.55	1.22	8.77	39.79	100.0	1,034	595
582	31	AV5	2.77	3.29	1.57	1.26	8.92	40.57	100.0	1,051	605
587	31	AV5	2.76	3.25	1.49	1.25	8.85	40.26	100.0	1,005	599
592	31	AV5	2.74	3.19	1.39	1.24	8.74	39.87	100.0	946	583
597	31	AV5	2.81	3.12	1.36	1.30	8.96	41.41	100.0	926	589
602	31	AV5	2.75	3.04	1.33	1.27	8.70	39.61	100.0	900	577
607	31	AV5	2.77	3.09	1.35	1.29	8.72	40.27	100.0	910	578
612	32	AV5	2.78	3.07	1.36	1.30	8.73	40.21	100.0	922	579
617	32	AV5	2.80	3.12	1.37	1.31	8.79	40.84	100.0	925	587
622	32	AV5	2.81	3.13	1.38	1.32	8.77	40.76	100.0	927	582
627	32	AV5	2.83	3.18	1.41	1.33	8.83	40.01	100.0	963	590
632	32	AV5	2.82	3.19	1.41	1.32	8.75	40.59	100.0	943	580
637	32	AV5	2.87	3.25	1.45	1.35	8.91	42.18	100.0	957	585
642	32	AV5	2.91	3.28	1.48	1.37	9.02	42.91	100.0	974	581
647	32	AV5	2.87	3.24	1.46	1.34	8.86	41.84	100.0	959	566
652	32	AV5	2.86	3.21	1.46	1.32	8.77	41.23	100.0	953	559
657	32	AV5	2.86	3.21	1.46	1.32	8.75	41.24	100.0	953	559
662	32	AV5	2.89	3.25	1.50	1.35	8.82	42.00	100.0	968	560
667	32	AV5	2.88	3.25	1.49	1.35	8.75	41.69	100.0	966	557
672	32	AV5	2.92	3.29	1.52	1.39	8.85	42.45	100.0	990	547
677	30	AV5	2.92	3.28	1.53	1.40	8.81	41.54	100.0	1,011	550
682	30	AV5	2.92	3.27	1.52	1.40	8.79	42.05	100.0	991	538
687	30	AV5	2.90	3.20	1.48	1.38	8.71	41.75	100.0	965	528
692	30	AV5	2.92	3.17	1.49	1.40	8.78	42.34	100.0	973	531
697	30	AV5	2.91	3.11	1.4/	1.40	8.79	42.41	100.0	963	541
/02	30	AV5	2.94	3.1/	1.49	1.43	8.87	42.83	100.0	985	553
/0/	28	AV5	2.94	3.19	1.49	1.41	8.77	42.34	100.0	980	544
/12	28	AV5	2.91	3.1/	1.4/	1.39	8.67	41./4	100.0	9/4	539
/1/	28	AV5	2.98	3.25	1.52	1.44	8.90	43.24	100.0	1,010	559
/22	28	AV5	2.97	3.24	1.51	1.42	8.80	42.51	100.0	1,008	555
/2/	28	AV5	2.96	3.23	1.51	1.41	8.76	42.36	100.0	1,015	560
/32	28	AV5	3.02	3.29	1.54	1.46	8.90	43.59	100.0	1,043	5/0
131	29	AV5	3.01	3.27	1.52	1.44	ö.ö4	42.86	100.0	1,046	562

Page 4 of 11 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEI OP: GRI	R CROS MGB	SSING B	ridge No	. 790207	- CFCC	WEST I	PILE N1		APE D4 Test dat	46-42 HA te: 23-Ja	MMER n-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
742	29	AV5	3.01	3.27	1.51	1.43	8.83	42.87	100.0	1,044	563
747	29	AV5	3.05	3.31	1.53	1.48	8.94	43.98	100.0	1,071	588
752	29	AV5	3.03	3.27	1.51	1.44	8.82	42.96	100.0	1,065	557
757	29	AV5	3.03	3.27	1.49	1.42	8.78	42.72	100.0	1,061	555
762	29	AV5	3.05	3.29	1.49	1.45	8.87	42.61	100.0	1,084	564
767	29	AV5	3.06	3.30	1.49	1.45	8.84	42.75	100.0	1,084	557
772	29	AV5	3.09	3.32	1.50	1.49	8.94	43.97	100.0	1,097	573
777	29	AV5	3.04	3.24	1.44	1.43	8.80	42.47	100.0	1,071	544
782	29	AV5	3.07	3.29	1.44	1.45	8.85	42.80	100.0	1,091	548
787	29	Δ\/5	3.06	3 29	1 4 2	1 43	8 80	41 87	100.0	1 098	545

									、 /		
742	29	AV5	3.01	3.27	1.51	1.43	8.83	42.87	100.0	1,044	563
747	29	AV5	3.05	3.31	1.53	1.48	8.94	43.98	100.0	1,071	588
752	29	AV5	3.03	3.27	1.51	1.44	8.82	42.96	100.0	1.065	557
757	29	AV5	3.03	3.27	1.49	1.42	8.78	42.72	100.0	1.061	555
762	29	AV5	3.05	3.29	1.49	1.45	8.87	42.61	100.0	1.084	564
767	29	AV5	3.06	3.30	1.49	1.45	8.84	42.75	100.0	1,084	557
772	29	AV5	3.09	3.32	1.50	1 4 9	8.94	43.97	100.0	1 097	573
777	29	AV5	3.04	3.24	1 44	1 43	8 80	42 47	100.0	1 071	544
782	29	ΔV_5	3.07	3 29	1 44	1 45	8.85	42.80	100.0	1 091	548
787	20	Δ./5	3.06	3 20	1 / 2	1/3	8 80	11 87	100.0	1 008	545
707	23		3.00	3 31	1 11	1.45	8 83	42.50	100.0	1 1 1 1	5/0
792	27		2.03	2.07	1.44	1 / 2	0.00	42.00	100.0	1,111	527
000	27		2 11	2.27	1.41	1.42	0.72	42.04	100.0	1,095	565
002	27		2 10	0.07	1.40	1.30	0.97	40.70	100.0	1,100	505
007	27		2 1/	2.22	1.42	1.40	0.01	42.00	100.0	1,120	545
012	27	AVS	0.14	0.00	1.44	1.40	0.91	40.70	100.0	1,140	554
017	27	AVS	0.10	0.01	1.42	1.40	0.70	42.40	100.0	1,101	545
022	30	AVS	0.14	3.35	1.40	1.45	0.02	42.00	100.0	1,101	505
027	30		0.14 0.10	3.30 2.24	1.47	1.44	0.03	42.09	100.0	1,170	554
032 007	30	AVS	0.10	0.04	1.45	1.41	0.79	41.91	100.0	1,1/3	551
837	30	AVS	3.17	3.39	1.47	1.42	0.91	42.88	100.0	1,192	563
842	30	AVS	3.10	3.38	1.40	1.40	0.04	42.83	100.0	1,184	503
847	30	AV5	3.19	3.41	1.49	1.41	8.90	42.90	100.0	1,208	5/1
852	31	AV5	3.19	3.42	1.51	1.41	8.92	43.07	100.0	1,219	5/5
857	31	AV5	3.18	3.40	1.48	1.39	8.84	42.12	100.0	1,214	5//
862	31	AV5	3.21	3.43	1.51	1.39	8.94	43.04	100.0	1,230	583
867	31	AV5	3.24	3.46	1.55	1.41	9.06	44.02	100.0	1,252	590
8/2	31	AV5	3.27	3.48	1.55	1.42	9.12	44.52	100.0	1,268	602
8//	31	AV5	3.28	3.49	1.56	1.43	9.14	43.68	100.0	1,284	605
882	34	AV5	3.22	3.43	1.53	1.37	8.96	42.10	100.0	1,270	602
887	34	AV5	3.24	3.45	1.52	1.37	9.00	42.77	100.0	1,2/3	607
892	34	AV5	3.25	3.45	1.51	1.36	9.02	43.02	100.0	1,2/1	606
897	34	AV5	3.28	3.50	1.53	1.37	9.13	44.07	100.0	1,280	605
902	34	AV5	3.27	3.49	1.54	1.35	9.09	43.48	100.0	1,289	606
907	34	AV5	3.28	3.49	1.53	1.35	9.10	43.67	100.0	1,287	603
912	34	AV5	3.27	3.48	1.53	1.33	9.05	43.39	100.0	1,288	596
917	34	AV5	3.31	3.52	1.56	1.35	9.18	44.49	100.0	1,305	600
922	34	AV5	3.32	3.54	1.56	1.36	9.21	44.70	100.0	1,304	600
927	34	AV5	3.33	3.55	1.57	1.37	9.25	43.92	100.0	1,336	612
932	34	AV5	3.30	3.52	1.54	1.34	9.13	43.54	100.0	1,312	596
937	34	AV5	3.28	3.50	1.53	1.33	9.07	43.04	100.0	1,310	598
942	34	AV5	3.36	3.58	1.59	1.38	9.33	44.85	100.0	1,345	612
947	34	AV5	3.34	3.57	1.59	1.37	9.27	44.45	100.0	1,319	587
952	34	AV5	3.33	3.57	1.56	1.35	9.21	43.99	100.0	1,303	577
957	34	AV5	3.33	3.60	1.57	1.35	9.20	44.29	100.0	1,308	585
962	34	AV5	3.30	3.59	1.54	1.33	9.14	43.79	100.0	1,290	579
967	34	AV5	3.32	3.61	1.55	1.34	9.18	43.92	100.0	1,295	581
972	34	AV5	3.33	3.63	1.54	1.35	9.21	44.33	100.0	1,303	591
977	34	AV5	3.35	3.64	1.55	1.36	9.26	44.94	100.0	1,310	602
982	33	AV5	3.41	3.71	1.62	1.41	9.51	46.38	100.0	1,337	609
987	33	AV5	3.39	3.69	1.58	1.40	9.46	45.59	100.0	1,336	610
992	33	AV5	3.38	3.68	1.58	1.39	9.40	44.81	100.0	1,335	606
997	33	AV5	3.40	3.71	1.59	1.41	9.50	46.31	100.0	1,336	610

Page 5 of 11 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

		SSING B	ridge No.	790207	- CFCC	WEST	PILE N1		APE D4	6-42 HA	MMER
		тург	COV	001	COD	TOV	OTV				
BL#	BLC	TYPE	658	051	CSB	158	516		BIA	RXU	RX5
ena			KSI	KSI	KSI	KSI		K-TT	(%)	KIPS	KIPS
1002	33	AV5	3.41	3.73	1.60	1.42	9.53	46.34	100.0	1,342	608
1007	33	AV5	3.39	3.71	1.59	1.40	9.45	45.77	100.0	1,327	598
1012	33	AV5	3.41	3.74	1.59	1.42	9.54	46.15	100.0	1,342	605
1017	32	AV5	3.39	3.72	1.57	1.40	9.49	45.62	100.0	1,336	597
1022	32	AV5	3.35	3.67	1.52	1.38	9.34	44.77	100.0	1,312	581
1027	32	AV5	3.38	3.72	1.56	1.39	9.43	45.62	100.0	1,326	587
1032	32	AV5	3.38	3.71	1.55	1.39	9.44	45.33	100.0	1,325	588
1037	32	AV5	3.40	3.74	1.59	1.42	9.54	46.23	100.0	1.343	596
1042	32	AV5	3.38	3.72	1.56	1.40	9.48	45.66	100.0	1,330	591
1047	35	AV5	3 38	3 71	1 53	1 40	9 46	45 33	100.0	1,331	587
1052	35	AV5	3.39	3 71	1 54	1 42	9 54	45.32	100.0	1,353	602
1057	35	Δ\/5	3 35	3.68	1.52	1 30	9.04	11 15	100.0	1 331	587
1062	25		2.26	2.60	1.52	1.00	0.20	44 74	100.0	1 227	507
1002	35		0.00	3.09	1.51	1.40	9.09	44.74	100.0	1,027	590
1007	35	AVS	3.34	3.00	1.51	1.40	9.33	44.41	100.0	1,310	583
1072	35	AV5	3.32	3.65	1.50	1.39	9.32	44.33	100.0	1,304	5/5
1077	35	AV5	3.34	3.65	1.49	1.41	9.39	44.57	100.0	1,308	5/6
1082	37	AV5	3.33	3.65	1.49	1.40	9.37	44.51	100.0	1,309	574
1087	37	AV5	3.33	3.65	1.50	1.39	9.38	44.66	100.0	1,311	578
1092	37	AV5	3.31	3.63	1.46	1.38	9.32	44.15	100.0	1,297	567
1097	37	AV5	3.37	3.70	1.53	1.43	9.53	45.48	100.0	1,336	585
1102	37	AV5	3.33	3.65	1.49	1.40	9.44	43.92	100.0	1,342	586
1107	37	AV5	3.32	3.64	1.48	1.39	9.45	44.47	100.0	1,321	574
1112	37	AV5	3.31	3.62	1.48	1.39	9.45	44.38	100.0	1.316	571
1117	37	AV5	3.31	3.62	1.48	1.39	9.44	44.71	100.0	1.311	564
1122	31	AV5	3 28	3 58	1 4 4	1 36	9 39	44 11	100.0	1,300	551
1127	31	AV5	3 25	3.54	1 42	1.33	9.23	43 56	100.0	1 281	535
1132	31	ΔV_{5}	3 25	3 53	1 4 2	1 33	9.28	43 55	100.0	1 284	529
1137	21	Δ\/5	3.24	3 52	1.46	1 33	0.20	13 12	100.0	1 202	527
11/2	21		2.27	2.50	1 / 2	1 21	0.25	12 22	100.0	1 295	521
1142	21		0.20	2.50	1.40	1.01	9.20	40.20	100.0	1,200	500
1147	07	AVD	3.23	3.50	1.43	1.32	9.30	43.30	100.0	1,200	522
	37	AVS	3.25	3.50	1.40	1.33	9.38	43.67	100.0	1,308	530
1157	37	AV5	3.25	3.49	1.44	1.34	9.44	43.83	100.0	1,310	536
1162	37	AV5	3.21	3.44	1.41	1.31	9.30	43.24	100.0	1,294	514
1167	37	AV5	3.18	3.41	1.39	1.29	9.26	42.93	100.0	1,274	503
1172	37	AV5	3.24	3.46	1.45	1.33	9.56	44.86	100.0	1,299	524
1177	37	AV5	3.23	3.42	1.44	1.33	9.58	44.14	100.0	1,310	523
1182	37	AV5	3.18	3.38	1.38	1.29	9.41	43.56	100.0	1,275	506
1187	38	AV5	3.15	3.35	1.40	1.26	9.34	43.00	100.0	1,275	497
1192	38	AV5	3.17	3.36	1.41	1.28	9.47	43.18	100.0	1,300	505
1197	38	AV5	3.09	3.26	1.35	1.21	9.16	41.69	100.0	1,263	470
1202	38	AV5	3.12	3.28	1.39	1.22	9.35	42.72	100.0	1.276	467
1207	38	AV5	3.13	3.28	1.38	1.22	9.47	43.35	100.0	1.278	466
1212	38	AV5	3.10	3.24	1.39	1.19	9.36	42.68	100.0	1,278	442
1217	38	AV5	3.08	3.21	1 40	1 18	9.35	42.26	100.0	1 285	431
1222	28	Δ\/5	3.07	3 19	1 40	1 17	0.00 9.28	41 75	100.0	1,202	428
1227	\7 2	Δ\/5	3 05	3 16	1 20	1 1/	0.00 Q 22	41.75	100.0	1 286	420
1020	40		3 07	2 15	1/0	1 15	0.02	10 10	100.0	1 202	721 /10
1007	40		2.07	0.10	1.42	1.10	J.4/	40.40	100.0	1,000	419
123/	43	AV5	3.04	3.11	1.39	1.13	9.30	42.04	100.0	1,200	412
1242	43	AV5	3.01	3.05	1.38	1.10	9.34	41.84	100.0	1,279	408
124/	43	AV5	3.03	3.06	1.40	1.11	9.45	42.52	100.0	1,289	411
1252	43	AV5	3.01	3.01	1.40	1.08	9.44	41.73	100.0	1,282	408
1257	43	AV5	2.99	3.02	1.37	1.05	9.39	41.59	100.0	1,274	406

Page 6 of 11 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEF		SSING E	Bridge No.	790207	- CFCC	WEST	PILE N1		APE D4	6-42 HA	MMER
OP: GRL	-MGB								l est da	ie: 23-Jai	1-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
1262	43	AV5	2.99	3.07	1.36	1.05	9.47	41.69	100.0	1,276	412
1267	43	AV5	2.99	3.10	1.37	1.04	9.53	42.06	100.0	1,280	409
1272	43	AV5	2.95	3.11	1.35	1.01	9.51	41.63	100.0	1,269	403
1277	43	AV5	2.95	3.15	1.34	1.00	9.51	41.70	100.0	1,265	403
1282	43	AV5	2.95	3.20	1.33	0.99	9.56	42.28	100.0	1,268	403
1287	43	AV5	2.92	3.23	1.35	0.98	9.53	41.77	100.0	1,268	400
1292	43	AV5	2.90	3.28	1.33	0.96	9.50	41.06	100.0	1,276	405
1297	43	AV5	2.87	3.29	1.32	0.93	9.36	39.38	100.0	1.276	410
1302	43	AV5	2.91	3.31	1.32	0.96	9.45	41.00	100.0	1.257	402
1307	43	AV5	2.93	3.34	1.35	0.97	9.47	40.56	100.0	1.274	406
1312	47	AV5	2.31	2.67	1.17	0.70	9.14	30.99	100.0	1,164	563
1317	47	AV5	2 01	2 20	0.97	0.30	8 39	27 57	97.8	1 108	563
1322	47	AV5	2 4 9	2.59	1 09	0.65	8 43	33 13	100.0	1 196	424
1327	47	$\Delta \sqrt{5}$	2 70	2.80	1 1 9	0.81	8 70	36 76	100.0	1 235	379
1332	47	Δ\/5	2 76	2.85	1.10	0.84	8 66	37 48	100.0	1 252	371
1337	47	Δ\/5	2.70	2.00	1 30	0.04	8 71	38 71	100.0	1 25/	367
13/2	47		2.02	2.00	1.30	0.00	8 82	30.71	100.0	1 260	371
1242	47		2.00	2.33	1.00	0.90	0.02	10 16	100.0	1 203	272
1252	47		2.00	3.03	1.30	0.90	0.00	40.10	100.0	1,201	275
1002	47	AV5	2.90	2.00	1.41	0.97	0.90	40.77	100.0	1,201	375
1007	47	AVS	2.91	3.07	1.42	0.90	0.93	40.93	100.0	1,200	3//
1002	47	AVS	2.91	3.00	1.43	0.90	0.04	40.02	100.0	1,292	300
1307	47	AVS	2.94	3.08	1.47	0.97	0.92	41.30	100.0	1,304	380
1077	47	AVS	2.92	3.05	1.49	0.93	0.02	40.37	100.0	1,308	392
13//	47	AV5	2.97	3.09	1.51	0.95	8.97	41.70	100.0	1,325	400
1382	47	AV5	2.97	3.10	1.54	0.92	8.95	41.45	100.0	1,341	409
1387	47	AV5	2.96	3.09	1.60	0.90	8.90	41.29	100.0	1,362	422
1392	47	AV5	3.00	3.12	1.65	0.89	9.05	41.99	100.0	1,388	443
1397	47	AV5	2.95	3.06	1.66	0.83	8.84	40.73	100.0	1,400	4//
1402	4/	AV5	3.00	3.05	1./1	0.82	8.99	42.13	100.0	1,427	493
1407	57	AV5	3.01	3.06	1./5	0.79	9.00	42.04	100.0	1,449	526
1412	57	AV5	2.99	3.10	1./8	0.74	8.95	41.13	100.0	1,457	565
1417	57	AV5	3.05	3.20	1.81	0.74	9.11	42.64	100.0	1,485	582
1422	57	AV5	3.05	3.20	1.85	0.71	9.12	42.60	100.0	1,500	607
1427	57	AV5	3.05	3.20	1.86	0.71	9.11	42.75	100.0	1,512	622
1432	57	AV5	3.02	3.15	1.86	0.69	9.01	42.08	100.0	1,517	641
1437	57	AV5	2.97	3.09	1.83	0.65	8.84	40.83	100.0	1,510	658
1442	57	AV5	3.07	3.17	1.87	0.72	9.18	43.11	100.0	1,536	657
1447	57	AV5	3.02	3.10	1.88	0.69	9.01	42.17	98.0	1,531	664
1452	57	AV5	3.05	3.12	1.89	0.71	9.12	42.89	98.0	1,536	663
1457	57	AV5	3.04	3.11	1.87	0.69	9.06	42.23	98.0	1,530	675
1462	66	AV5	3.03	3.13	1.90	0.70	9.04	42.26	93.8	1,536	678
1467	66	AV5	3.02	3.10	1.90	0.70	9.03	42.07	93.6	1,536	691
1472	66	AV5	2.99	3.03	1.90	0.68	8.91	41.50	93.4	1,537	707
1477	66	AV5	2.99	3.00	1.89	0.69	8.91	41.44	100.0	1,535	715
1482	66	AV5	3.01	3.02	1.92	0.70	8.98	41.81	96.0	1,537	726
1487	66	AV5	2.99	3.03	1.93	0.69	8.90	41.26	94.0	1,539	740
1492	66	AV5	2.96	3.00	1.91	0.68	8.83	40.92	100.0	1,538	752
1497	66	AV5	3.02	3.06	1.96	0.71	9.06	42.45	98.0	1,555	766
1502	66	AV5	3.04	3.08	1.99	0.73	9.15	42.93	94.0	1,559	780
1507	66	AV5	3.08	3.10	2.01	0.75	9.31	43.79	96.0	1,569	794
1512	66	AV5	3.03	3.05	2.02	0.72	9.12	42.56	96.0	1,560	799
1517	66	AV5	3.03	3.06	2.00	0.73	9.14	42.80	98.0	1,565	809

GRL Engineers, Inc. Case Meth

Page 7 of 11

Case Me	thod &	iCAP® R	Results	LOT Ve	r. 2014.	1 - Printe	ed: 25-Ja	n-2014			
I-4 DEEF OP: GRL	CROS -MGB	SSING Br	ridge No.	790207	- CFCC	WEST I	PILE N1		APE D4 Test dat	l6-42 HA te: 23-Ja	MMER n-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
1522	66	AV5	3.02	3.06	1.99	0.72	9.07	42.37	10Ò.Ó	1,563	819
1527	66	AV5	3.03	3.08	2.03	0.73	9.09	42.57	100.0	1,568	827
1532	84	AV5	3.02	3.07	2.03	0.73	9.07	42.23	100.0	1,569	838
1537	84	AV5	2.96	3.00	1.99	0.70	8.86	40.75	100.0	1,553	838
1542	84	AV5	2.99	3.01	2.03	0.71	8.97	41.39	100.0	1,565	851
1547	84	AV5	3.05	3.06	2.08	0.75	9.25	42.94	100.0	1,584	862
1552	84	AV5	3.03	3.04	2.06	0.75	9.20	42.74	100.0	1,580	867
1557	84	AV5	3.00	3.01	2.07	0.74	9.08	42.10	100.0	1,565	867
1562	84	AV5	3.02	3.04	2.06	0.75	9.15	42.39	100.0	1,565	874
1567	84	AV5	3.04	3.09	2.06	0.77	9.24	43.00	100.0	1,566	877
1572	84	AV5	3.01	3.07	2.09	0.76	9.13	42.34	100.0	1,551	875
1577	84	AV5	3.03	3.09	2.08	0.78	9.21	43.08	100.0	1,555	879
1582	84	AV5	3.03	3.10	2.09	0.79	9.22	43.33	100.0	1,553	879
1587	84	AV5	2.98	3.05	2.05	0.77	9.06	42.18	100.0	1,529	871
1592	84	AV5	2.97	3.03	2.02	0.76	8.98	41.40	100.0	1,500	867
1597	84	AV5	3.00	3.06	2.04	0.79	9.10	42.27	100.0	1,514	876
1602	84	AV5	3.04	3.10	2.06	0.82	9.34	43.33	98.0	1,515	883
1607	84	AV5	3.02	3.07	2.04	0.83	9.30	43.01	100.0	1,508	883
1612	103	AV5	2.99	3.03	2.01	0.82	9.15	42.08	100.0	1,492	883
1617	103	AV5	3.02	3.07	2.06	0.85	9.32	43.06	100.0	1,503	889
1622	103	AV5	2.99	3.05	2.03	0.86	9.23	42.55	100.0	1,489	887
1627	103	AV5	2.99	3.06	2.05	0.87	9.21	42.51	100.0	1,484	889
1632	103	AV5	3.00	3.08	2.03	0.88	9.26	42.92	100.0	1,483	891
1637	103	AV5	2.99	3.07	2.06	0.88	9.23	43.26	100.0	1,484	889
1642	103	AV5	3.02	3.11	2.08	0.91	9.41	43.90	100.0	1,486	895
1647	103	AV5	2.98	3.07	2.07	0.89	9.25	43.20	100.0	1,472	889
1652	103	AV5	3.01	3.10	2.11	0.92	9.32	44.17	100.0	1,487	893
1657	103	AV5	3.00	3.08	2.08	0.92	9.31	43.68	100.0	1,471	892
1662	103	۵\/5	2 08	3 06	2 00	0 01	0.25	13 10	100.0	1 /60	802

84	AV5	2.97	3.03	2.02	0.76	8.98	41.40	100.0	1,500	867
84	AV5	3.00	3.06	2.04	0.79	9.10	42.27	100.0	1.514	876
84	AV5	3.04	3.10	2.06	0.82	9.34	43.33	98.0	1,515	883
84	AV5	3.02	3.07	2.04	0.83	9.30	43.01	100.0	1,508	883
103	AV5	2.99	3.03	2.01	0.82	9.15	42.08	100.0	1,492	883
103	AV5	3.02	3.07	2.06	0.85	9.32	43.06	100.0	1,503	889
103	AV5	2.99	3.05	2.03	0.86	9.23	42.55	100.0	1,489	887
103	AV5	2.99	3.06	2.05	0.87	9.21	42.51	100.0	1,484	889
103	AV5	3.00	3.08	2.03	0.88	9.26	42.92	100.0	1,483	891
103	AV5	2.99	3.07	2.06	0.88	9.23	43.26	100.0	1,484	889
103	AV5	3.02	3.11	2.08	0.91	9.41	43.90	100.0	1,486	895
103	AV5	2.98	3.07	2.07	0.89	9.25	43.20	100.0	1,472	889
103	AV5	3.01	3.10	2.11	0.92	9.32	44.17	100.0	1,487	893
103	AV5	3.00	3.08	2.08	0.92	9.31	43.68	100.0	1,471	892
103	AV5	2.98	3.06	2.09	0.91	9.25	43.49	100.0	1,469	892
103	AV5	2.96	3.04	2.08	0.90	9.17	42.85	100.0	1,461	893
103	AV5	2.97	3.05	2.09	0.90	9.17	42.91	100.0	1,463	895
103	AV5	2.97	3.06	2.10	0.90	9.22	43.04	100.0	1,465	898
103	AV5	2.99	3.07	2.09	0.92	9.31	43.53	100.0	1,471	899
103	AV5	2.99	3.08	2.12	0.92	9.31	43.79	100.0	1,472	899
103	AV5	2.98	3.07	2.12	0.90	9.27	43.65	100.0	1,470	900
103	AV5	2.98	3.07	2.10	0.91	9.30	43.33	100.0	1,460	902
103	AV5	2.99	3.07	2.11	0.91	9.33	43.59	100.0	1,461	903
103	AV5	2.98	3.08	2.13	0.90	9.32	43.72	100.0	1,465	904
103	AV5	2.98	3.08	2.13	0.90	9.36	43.65	100.0	1,459	903
106	AV5	3.00	3.10	2.13	0.92	9.41	44.10	100.0	1,468	906
106	AV5	3.00	3.10	2.13	0.91	9.40	44.10	100.0	1,464	905
106	AV5	3.03	3.14	2.17	0.93	9.56	45.02	100.0	1,478	908
106	AV5	3.00	3.11	2.18	0.92	9.45	44.50	100.0	1,471	905
106	AV5	2.99	3.09	2.15	0.91	9.41	43.93	100.0	1,458	903
106	AV5	2.99	3.07	2.15	0.92	9.38	43.92	100.0	1,457	902
106	AV5	2.97	3.06	2.14	0.91	9.30	43.24	100.0	1,448	901
106	AV5	3.01	3.10	2.16	0.93	9.48	44.55	100.0	1,464	904
106	AV5	2.98	3.06	2.15	0.91	9.32	43.39	100.0	1,446	902
106	AV5	2.99	3.08	2.15	0.92	9.39	43.82	100.0	1,451	905
106	AV5	2.98	3.07	2.17	0.92	9.35	43.48	100.0	1,446	902
106	AV5	2.94	3.03	2.15	0.89	9.15	42.50	100.0	1,432	898
106	AV5	2.98	3.07	2.17	0.91	9.30	43.44	100.0	1,441	901
	$\begin{array}{c} 84\\ 84\\ 84\\ 103\\ 103\\ 103\\ 103\\ 103\\ 103\\ 103\\ 103$	84AV584AV584AV5103AV5104AV5105AV5106AV5	84 AV5 2.97 84 AV5 3.00 84 AV5 3.04 84 AV5 3.02 103 AV5 2.99 103 AV5 2.98 103 AV5 2.98 103 AV5 2.98 103 AV5 2.98 103 AV5 2.97 103 AV5 2.99 103 AV5 2.99 103 AV5 2.98 103 AV5 2.98 103 AV5 2.98 103 AV5	84AV5 2.97 3.03 84 AV5 3.00 3.06 84 AV5 3.04 3.10 84 AV5 3.02 3.07 103 AV5 2.99 3.03 103 AV5 2.99 3.03 103 AV5 2.99 3.05 103 AV5 2.99 3.06 103 AV5 2.99 3.06 103 AV5 2.99 3.07 103 AV5 2.99 3.07 103 AV5 2.99 3.07 103 AV5 2.98 3.07 103 AV5 2.98 3.07 103 AV5 2.98 3.06 103 AV5 2.97 3.06 103 AV5 2.97 3.06 103 AV5 2.97 3.06 103 AV5 2.99 3.07 103 AV5 2.99 3.07 103 AV5 2.99 3.07 103 AV5 2.98 3.07 103 AV5 2.98 3.07 103 AV5 2.98 3.08 104 AV5 2.98 3.08 105 AV5 2.99 3.07 106 AV5 3.00 3.11 106 AV5 2.99 3.07 106 AV5 2.98 3.07 106 AV5 2.98 3.07 106 AV5 2.98 3.07 106 AV5<	84AV52.973.032.02 84 AV53.003.062.04 84 AV53.023.072.04 103 AV52.993.032.01 103 AV52.993.052.03 103 AV52.993.052.03 103 AV52.993.062.05 103 AV52.993.062.05 103 AV52.993.072.06 103 AV52.993.072.06 103 AV52.993.072.06 103 AV52.983.072.07 103 AV52.983.072.07 103 AV52.983.062.09 103 AV52.983.062.09 103 AV52.963.042.08 103 AV52.973.052.09 103 AV52.973.062.10 103 AV52.993.072.10 103 AV52.983.072.12 103 AV52.983.072.11 103 AV52.983.082.13 106 AV53.003.102.13 106 AV53.003.102.13 106 AV53.013.102.16 106 AV52.993.072.15 106 AV52.983.072.17 106 AV52.98 <td>84AV5$2.97$$3.03$$2.02$$0.76$$84$AV5$3.00$$3.06$$2.04$$0.79$$84$AV5$3.02$$3.07$$2.04$$0.83$$103$AV5$2.99$$3.03$$2.01$$0.82$$103$AV5$2.99$$3.03$$2.01$$0.82$$103$AV5$2.99$$3.05$$2.03$$0.86$$103$AV5$2.99$$3.06$$2.05$$0.87$$103$AV5$2.99$$3.07$$2.06$$0.88$$103$AV5$2.99$$3.07$$2.06$$0.88$$103$AV5$2.99$$3.07$$2.06$$0.88$$103$AV5$2.98$$3.07$$2.07$$0.89$$103$AV5$2.98$$3.06$$2.09$$0.91$$103$AV5$2.96$$3.04$$2.08$$0.90$$103$AV5$2.97$$3.06$$2.10$$0.90$$103$AV5$2.99$$3.07$$2.10$$0.91$$103$AV5$2.98$$3.07$$2.10$$0.91$$103$AV5$2.98$$3.07$$2.10$$0.91$$103$AV5$2.98$$3.07$$2.10$$0.91$$103$AV5$2.98$$3.07$$2.11$$0.91$$103$AV5$2.98$$3.07$$2.11$$0.91$$103$AV5$2.98$$3.07$$2.11$$0.91$$103$AV5$2.98$</td> <td>84AV5$2.97$$3.03$$2.02$$0.76$$8.98$$84$AV5$3.00$$3.06$$2.04$$0.79$$9.10$$84$AV5$3.02$$3.07$$2.04$$0.83$$9.30$$103$AV5$2.99$$3.03$$2.01$$0.82$$9.15$$103$AV5$2.99$$3.05$$2.03$$0.86$$9.23$$103$AV5$2.99$$3.05$$2.03$$0.86$$9.23$$103$AV5$2.99$$3.06$$2.05$$0.87$$9.21$$103$AV5$2.99$$3.07$$2.06$$0.88$$9.23$$103$AV5$2.99$$3.07$$2.06$$0.88$$9.23$$103$AV5$2.98$$3.07$$2.07$$0.89$$9.25$$103$AV5$2.98$$3.07$$2.07$$0.89$$9.25$$103$AV5$2.98$$3.06$$2.09$$0.91$$9.17$$103$AV5$2.98$$3.06$$2.09$$0.91$$9.25$$103$AV5$2.97$$3.06$$2.10$$0.90$$9.17$$103$AV5$2.99$$3.07$$2.09$$0.92$$9.31$$103$AV5$2.99$$3.07$$2.09$$0.92$$9.31$$103$AV5$2.99$$3.07$$2.11$$0.91$$9.30$$103$AV5$2.99$$3.07$$2.12$$0.90$$9.27$$103$AV5$2.98$$3.07$</td> <td>84AV52.973.032.020.768.9841.4084AV53.003.062.040.799.1042.2784AV53.043.102.060.829.3443.3384AV53.023.072.040.839.3043.01103AV52.993.032.010.829.1542.08103AV52.993.052.030.869.2342.55103AV52.993.062.050.879.2142.51103AV53.003.082.030.889.2642.92103AV53.023.112.080.919.4143.06103AV53.023.112.080.919.4143.20103AV53.013.102.110.929.3244.17103AV53.003.082.080.929.3143.68103AV52.983.062.090.919.2543.20103AV52.983.062.090.919.2543.49103AV52.973.052.090.909.1742.85103AV52.993.072.090.929.3143.53103AV52.993.072.100.919.3043.45103AV52.993.072.100.919.3043.53103AV5<!--</td--><td>84 AV5 2.97 3.03 2.02 0.76 8.98 41.40 100.0 84 AV5 3.00 3.06 2.04 0.79 9.10 42.27 100.0 84 AV5 3.02 3.07 2.04 0.83 9.30 43.01 100.0 103 AV5 2.99 3.02 2.01 0.82 9.15 42.08 100.0 103 AV5 2.99 3.05 2.03 0.86 9.23 43.25 100.0 103 AV5 2.99 3.06 2.05 0.87 9.21 42.51 100.0 103 AV5 2.99 3.06 2.03 0.88 9.26 42.92 100.0 103 AV5 2.99 3.07 2.06 0.88 9.23 43.26 100.0 103 AV5 2.98 3.07 2.07 0.89 9.25 43.20 100.0 103 AV5 2.98 3.06</td><td>84AV5$2.97$$3.03$$2.02$$0.76$$8.98$$41.40$$100.0$$1,500$84AV5$3.00$$3.06$$2.04$$0.79$$9.10$$42.27$$100.0$$1,515$84AV5$3.02$$3.07$$2.06$$0.82$$9.34$$43.33$$98.0$$1,515$84AV5$3.02$$3.07$$2.06$$0.83$$9.30$$43.01$$100.0$$1,508$103AV5$2.99$$3.03$$2.01$$0.82$$9.15$$42.08$$100.0$$1,492$103AV5$2.99$$3.06$$2.05$$0.87$$9.21$$42.55$$100.0$$1,484$103AV5$2.99$$3.06$$2.05$$0.87$$9.21$$42.51$$100.0$$1,484$103AV5$2.99$$3.06$$2.03$$0.88$$9.23$$43.26$$100.0$$1,484$103AV5$2.99$$3.07$$2.06$$0.88$$9.23$$43.26$$100.0$$1,474$103AV5$2.98$$3.07$$2.07$$0.89$$9.25$$43.20$$100.0$$1,471$103AV5$3.00$$3.08$$2.08$$0.92$$9.31$$43.68$$100.0$$1,471$103AV5$2.96$$3.04$$2.08$$0.90$$9.17$$42.85$$100.0$$1,471$103AV5$2.99$$3.07$$2.10$$0.90$$9.27$$43.65$$100.0$$1,471$103</td></td>	84AV5 2.97 3.03 2.02 0.76 84 AV5 3.00 3.06 2.04 0.79 84 AV5 3.02 3.07 2.04 0.83 103 AV5 2.99 3.03 2.01 0.82 103 AV5 2.99 3.03 2.01 0.82 103 AV5 2.99 3.05 2.03 0.86 103 AV5 2.99 3.06 2.05 0.87 103 AV5 2.99 3.07 2.06 0.88 103 AV5 2.99 3.07 2.06 0.88 103 AV5 2.99 3.07 2.06 0.88 103 AV5 2.98 3.07 2.07 0.89 103 AV5 2.98 3.06 2.09 0.91 103 AV5 2.96 3.04 2.08 0.90 103 AV5 2.97 3.06 2.10 0.90 103 AV5 2.99 3.07 2.10 0.91 103 AV5 2.98 3.07 2.11 0.91 103 AV5 2.98 3.07 2.11 0.91 103 AV5 2.98 3.07 2.11 0.91 103 AV5 2.98	84AV5 2.97 3.03 2.02 0.76 8.98 84 AV5 3.00 3.06 2.04 0.79 9.10 84 AV5 3.02 3.07 2.04 0.83 9.30 103 AV5 2.99 3.03 2.01 0.82 9.15 103 AV5 2.99 3.05 2.03 0.86 9.23 103 AV5 2.99 3.05 2.03 0.86 9.23 103 AV5 2.99 3.06 2.05 0.87 9.21 103 AV5 2.99 3.07 2.06 0.88 9.23 103 AV5 2.99 3.07 2.06 0.88 9.23 103 AV5 2.98 3.07 2.07 0.89 9.25 103 AV5 2.98 3.07 2.07 0.89 9.25 103 AV5 2.98 3.06 2.09 0.91 9.17 103 AV5 2.98 3.06 2.09 0.91 9.25 103 AV5 2.97 3.06 2.10 0.90 9.17 103 AV5 2.99 3.07 2.09 0.92 9.31 103 AV5 2.99 3.07 2.09 0.92 9.31 103 AV5 2.99 3.07 2.11 0.91 9.30 103 AV5 2.99 3.07 2.12 0.90 9.27 103 AV5 2.98 3.07	84AV52.973.032.020.768.9841.4084AV53.003.062.040.799.1042.2784AV53.043.102.060.829.3443.3384AV53.023.072.040.839.3043.01103AV52.993.032.010.829.1542.08103AV52.993.052.030.869.2342.55103AV52.993.062.050.879.2142.51103AV53.003.082.030.889.2642.92103AV53.023.112.080.919.4143.06103AV53.023.112.080.919.4143.20103AV53.013.102.110.929.3244.17103AV53.003.082.080.929.3143.68103AV52.983.062.090.919.2543.20103AV52.983.062.090.919.2543.49103AV52.973.052.090.909.1742.85103AV52.993.072.090.929.3143.53103AV52.993.072.100.919.3043.45103AV52.993.072.100.919.3043.53103AV5 </td <td>84 AV5 2.97 3.03 2.02 0.76 8.98 41.40 100.0 84 AV5 3.00 3.06 2.04 0.79 9.10 42.27 100.0 84 AV5 3.02 3.07 2.04 0.83 9.30 43.01 100.0 103 AV5 2.99 3.02 2.01 0.82 9.15 42.08 100.0 103 AV5 2.99 3.05 2.03 0.86 9.23 43.25 100.0 103 AV5 2.99 3.06 2.05 0.87 9.21 42.51 100.0 103 AV5 2.99 3.06 2.03 0.88 9.26 42.92 100.0 103 AV5 2.99 3.07 2.06 0.88 9.23 43.26 100.0 103 AV5 2.98 3.07 2.07 0.89 9.25 43.20 100.0 103 AV5 2.98 3.06</td> <td>84AV5$2.97$$3.03$$2.02$$0.76$$8.98$$41.40$$100.0$$1,500$84AV5$3.00$$3.06$$2.04$$0.79$$9.10$$42.27$$100.0$$1,515$84AV5$3.02$$3.07$$2.06$$0.82$$9.34$$43.33$$98.0$$1,515$84AV5$3.02$$3.07$$2.06$$0.83$$9.30$$43.01$$100.0$$1,508$103AV5$2.99$$3.03$$2.01$$0.82$$9.15$$42.08$$100.0$$1,492$103AV5$2.99$$3.06$$2.05$$0.87$$9.21$$42.55$$100.0$$1,484$103AV5$2.99$$3.06$$2.05$$0.87$$9.21$$42.51$$100.0$$1,484$103AV5$2.99$$3.06$$2.03$$0.88$$9.23$$43.26$$100.0$$1,484$103AV5$2.99$$3.07$$2.06$$0.88$$9.23$$43.26$$100.0$$1,474$103AV5$2.98$$3.07$$2.07$$0.89$$9.25$$43.20$$100.0$$1,471$103AV5$3.00$$3.08$$2.08$$0.92$$9.31$$43.68$$100.0$$1,471$103AV5$2.96$$3.04$$2.08$$0.90$$9.17$$42.85$$100.0$$1,471$103AV5$2.99$$3.07$$2.10$$0.90$$9.27$$43.65$$100.0$$1,471$103</td>	84 AV5 2.97 3.03 2.02 0.76 8.98 41.40 100.0 84 AV5 3.00 3.06 2.04 0.79 9.10 42.27 100.0 84 AV5 3.02 3.07 2.04 0.83 9.30 43.01 100.0 103 AV5 2.99 3.02 2.01 0.82 9.15 42.08 100.0 103 AV5 2.99 3.05 2.03 0.86 9.23 43.25 100.0 103 AV5 2.99 3.06 2.05 0.87 9.21 42.51 100.0 103 AV5 2.99 3.06 2.03 0.88 9.26 42.92 100.0 103 AV5 2.99 3.07 2.06 0.88 9.23 43.26 100.0 103 AV5 2.98 3.07 2.07 0.89 9.25 43.20 100.0 103 AV5 2.98 3.06	84AV5 2.97 3.03 2.02 0.76 8.98 41.40 100.0 $1,500$ 84AV5 3.00 3.06 2.04 0.79 9.10 42.27 100.0 $1,515$ 84AV5 3.02 3.07 2.06 0.82 9.34 43.33 98.0 $1,515$ 84AV5 3.02 3.07 2.06 0.83 9.30 43.01 100.0 $1,508$ 103AV5 2.99 3.03 2.01 0.82 9.15 42.08 100.0 $1,492$ 103AV5 2.99 3.06 2.05 0.87 9.21 42.55 100.0 $1,484$ 103AV5 2.99 3.06 2.05 0.87 9.21 42.51 100.0 $1,484$ 103AV5 2.99 3.06 2.03 0.88 9.23 43.26 100.0 $1,484$ 103AV5 2.99 3.07 2.06 0.88 9.23 43.26 100.0 $1,474$ 103AV5 2.98 3.07 2.07 0.89 9.25 43.20 100.0 $1,471$ 103AV5 3.00 3.08 2.08 0.92 9.31 43.68 100.0 $1,471$ 103AV5 2.96 3.04 2.08 0.90 9.17 42.85 100.0 $1,471$ 103AV5 2.99 3.07 2.10 0.90 9.27 43.65 100.0 $1,471$ 103

Page 8 of 11 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEF OP: GRL	R CROS MGB	SSING Br	ridge No.	790207	- CFCC	WEST F	PILE N1		APE D4 Test dat	6-42 HA	MMER n-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
1784	106	AV5	2.97	3.07	2.18	0.91	9.29	43.30	100.0	1.436	900
1789	106	AV5	3.01	3 11	2 19	0.93	9 40	43.91	100.0	1 445	904
1794	106	Δ\/5	2 99	3 10	2 19	0.00	9.40	43.53	100.0	1 438	902
1700	100		2.00	3 13	2.10	0.00	0.01	11 20	100.0	1 //7	902
1001	100		2.01	2 11	2.21	0.04	0.92	44.20	100.0	1,447	001
1004	100	AVS	3.00	0.10	2.19	0.93	9.33	40.02	100.0	1,404	901
1809	100	AVS	2.99	3.12	2.18	0.93	9.29	43.19	100.0	1,420	899
1814	106	AV5	3.03	3.16	2.22	0.95	9.43	44.41	100.0	1,444	905
1819	106	AV5	3.03	3.16	2.20	0.96	9.40	43.95	100.0	1,432	900
1824	97	AV5	3.03	3.16	2.21	0.96	9.39	44.29	100.0	1,435	899
1829	97	AV5	3.03	3.16	2.21	0.95	9.36	44.12	100.0	1,432	897
1834	97	AV5	3.10	3.23	2.22	0.99	9.62	45.55	100.0	1,440	899
1839	97	AV5	3.08	3.21	2.22	0.99	9.56	45.19	100.0	1,431	892
1844	97	AV5	3.07	3.19	2.20	0.99	9.46	44.59	100.0	1,421	889
1849	97	AV5	3.03	3.15	2.16	0.97	9.25	42.97	100.0	1,394	883
1854	97	AV5	3.09	3.22	2.20	1.00	9.46	44.70	100.0	1,418	889
1859	97	AV5	3.08	3.21	2.19	0.99	9.41	44.17	100.0	1,407	883
1864	97	AV5	3.12	3.25	2.21	1.01	9.49	45.11	100.0	1,421	886
1869	97	AV5	3.13	3.27	2.20	1.02	9.53	45.48	100.0	1,416	881
1874	97	AV5	3.18	3.32	2.21	1.05	9.67	46.47	100.0	1.421	881
1879	97	AV5	3.13	3.26	2.18	1.02	9.47	44.95	100.0	1,401	871
1884	97	AV5	3.14	3.28	2.19	1.03	9.47	45.15	100.0	1,404	871
1889	97	AV5	3 16	3.30	217	1 04	9.51	45.09	100.0	1 395	866
1894	97	Δ\/5	3 17	3 31	217	1.04	9.52	45.00	100.0	1 397	865
1800	97	Δ\/5	3 17	3 31	2.17	1.05	9.52	11 96	100.0	1 387	000
1000	07		3 10	3 34	2.10	1.05	0.50	45 57	100.0	1 30/	000
1000	07		2 10	2 24	2.17	1.05	0.40	45.57	100.0	1 2 2 1	852
1014	97		2.19	0.04	2.15	1.00	9.49	45.25	100.0	1 201	000
1914	97	AVS	0.22	0.07	2.10	1.00	9.55	40.02	100.0	1,004	000
1919	80	AVD	3.23	3.38	2.14	1.08	9.53	45.72	100.0	1,370	844
1924	86	AVS	3.21	3.30	2.12	1.08	9.42	45.03	100.0	1,303	837
1929	86	AV5	3.21	3.35	2.12	1.07	9.39	44.85	100.0	1,359	833
1934	86	AV5	3.24	3.38	2.12	1.08	9.48	45.14	100.0	1,360	834
1939	86	AV5	3.25	3.40	2.11	1.10	9.48	45.38	100.0	1,362	834
1944	86	AV5	3.28	3.43	2.10	1.12	9.57	45.67	100.0	1,358	829
1949	86	AV5	3.26	3.41	2.09	1.10	9.43	44.94	100.0	1,346	823
1954	86	AV5	3.28	3.42	2.09	1.11	9.45	45.21	100.0	1,345	822
1959	86	AV5	3.30	3.45	2.10	1.13	9.55	46.14	100.0	1,353	821
1964	86	AV5	3.32	3.47	2.09	1.14	9.59	46.13	100.0	1,345	816
1969	86	AV5	3.30	3.45	2.08	1.13	9.49	45.49	100.0	1,336	812
1974	86	AV5	3.28	3.43	2.06	1.13	9.40	44.98	100.0	1,325	806
1979	86	AV5	3.33	3.50	2.08	1.15	9.54	46.05	100.0	1,332	804
1984	86	AV5	3.31	3.48	2.06	1.15	9.47	45.31	100.0	1,320	802
1989	86	AV5	3.33	3.48	2.05	1.15	9.48	45.45	100.0	1,317	800
1994	86	AV5	3.34	3.48	2.06	1.16	9.50	45.95	100.0	1.321	800
1999	86	AV5	3.35	3.49	2.05	1.16	9.54	46.07	100.0	1.317	796
2004	76	AV5	3 36	3 50	2 04	1 16	9 54	45 72	100.0	1 314	792
2009	76	AV5	3.38	3 52	2 04	1 17	9.60	46 16	100.0	1,312	788
2014	76	Δ\/5	3 35	3 40	2.04	1 17	9.00 9.47	45.10	100.0	1,302	787
2014	76		3 38	2 52	2.00	1 1 2	9. 7 7 9.56	16 12	100.0	1 300	796
2013	70		2 27	0.00 2 E1	2.00	1 16	9.50	40.12 15 77	100.0	1 303	700
2024	70		0.0/ 0.00	0.01	2.02	1.10	9.00	40.//	100.0	1 205	110
2029	70 70		3.39	3.33 0.50	2.01	1.1/	9.00	40.//	100.0	1,290	774
2034	/b 70	AV5	3.39	3.53	2.00	1.1/	9.54	40.87	100.0	1,292	771
2039	76	AV5	3.41	3.56	2.00	1.18	9.62	40.24	100.0	1,291	768

Page 9 of 11 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEER CROSSING Bridge No. 790207 -						WEST	PILE N1	APE D46-42 HAMMER			
OP: GR	L-IVIGB								Test dat	e: 23-Jai	1-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
2044	76	AV5	3.40	3.54	1.99	1.18	9.51	45.87	100.0	1,286	766
2049	76	AV5	3.38	3.52	1.97	1.17	9.46	45.21	100.0	1,277	760
2054	76	AV5	3.41	3.56	1.98	1.18	9.56	46.03	100.0	1,280	761
2059	76	AV5	3.44	3.58	1.97	1.19	9.62	46.48	100.0	1,279	755
2064	76	AV5	3.42	3.56	1.96	1.18	9.54	45.98	100.0	1,272	756
2069	76	AV5	3.46	3.61	1.97	1.20	9.73	47.30	100.0	1,282	760
2074	76	AV5	3.38	3.52	1.92	1.17	9.39	44.39	100.0	1,253	738
2079	76	AV5	3.41	3.55	1.94	1.18	9.49	45.43	100.0	1.261	745
2084	69	AV5	3.42	3.56	1.95	1.18	9.51	45.65	100.0	1.268	742
2089	69	AV5	3.41	3.54	1.94	1.18	9.48	45.44	100.0	1,266	743
2094	69	AV5	3 46	3 60	1 97	1 20	9.66	46 71	100.0	1,287	743
2099	69	AV5	3 4 2	3 55	1 93	1 18	9.51	45 42	100.0	1,266	735
2104	69	Δ\/5	3 44	3 57	1.00	1 18	9.53	45 78	100.0	1 277	732
2104	60		3.45	3 50	1 95	1 10	9.50 9.50	45.70	100.0	1 28/	728
2103	60		3 11	3 58	1.00	1.10	0.50	45.70	100.0	1 276	724
2114	60		2 15	2.50	1.04	1.10	9.52	45.05	100.0	1 2 2 2	702
2113	60		2 40	2.00	1.95	1.19	9.55	40.01	100.0	1,202	720
2124	60	AVS	0.49	3.03	1.90	1.20	9.07	40.09	100.0	1,300	720
2129	69		3.43	3.57	1.93	1.10	9.47	44.89	100.0	1,272	711
2134	69		3.47	3.62	1.90	1.19	9.58	40.03	100.0	1,292	717
2139	69	AV5	3.45	3.59	1.94	1.19	9.53	45.10	100.0	1,286	706
2144	69	AV5	3.46	3.58	1.94	1.19	9.54	45.21	100.0	1,294	710
2149	63	AV5	3.47	3.60	1.95	1.19	9.57	45.24	100.0	1,308	706
2154	63	AV5	3.47	3.61	1.95	1.19	9.57	45.29	100.0	1,304	/05
2159	63	AV5	3.46	3.60	1.94	1.19	9.55	44.77	100.0	1,303	703
2164	63	AV5	3.48	3.62	1.95	1.20	9.61	45.69	100.0	1,309	702
2169	63	AV5	3.49	3.63	1.96	1.20	9.65	45.85	100.0	1,319	700
2174	63	AV5	3.47	3.61	1.94	1.18	9.56	45.24	100.0	1,309	693
2179	63	AV5	3.44	3.58	1.91	1.17	9.45	44.05	100.0	1,302	689
2184	63	AV5	3.45	3.59	1.91	1.17	9.48	44.32	100.0	1,302	689
2189	63	AV5	3.50	3.65	1.95	1.18	9.66	45.47	100.0	1,326	690
2194	63	AV5	3.46	3.60	1.91	1.16	9.49	44.44	100.0	1,313	687
2199	63	AV5	3.49	3.64	1.94	1.18	9.61	44.97	100.0	1,327	682
2205	63	AV5	3.49	3.64	1.94	1.18	9.61	45.12	100.0	1,328	682
2210	63	AV5	3.46	3.61	1.91	1.17	9.52	44.59	100.0	1,314	678
2215	60	AV5	3.50	3.66	1.93	1.18	9.64	45.65	100.0	1,326	681
2220	60	AV5	3.48	3.65	1.92	1.18	9.60	45.20	100.0	1,315	672
2225	60	AV5	3.45	3.62	1.90	1.17	9.49	44.50	100.0	1,303	671
2230	60	AV5	3.43	3.60	1.87	1.16	9.43	43.95	100.0	1,289	665
2235	60	AV5	3.49	3.69	1.93	1.20	9.65	45.56	100.0	1,324	663
2240	60	AV5	3.51	3.73	1.92	1.21	9.75	46.07	100.0	1,324	659
2245	60	AV5	3.45	3.67	1.87	1.19	9.53	44.83	100.0	1,291	656
2250	60	AV5	3.43	3.66	1.86	1.19	9.47	44.48	100.0	1,286	653
2255	60	AV5	3.48	3.71	1.89	1.22	9.62	45.41	100.0	1.313	653
2260	60	AV5	3.42	3.64	1.83	1.19	9.43	44.04	98.0	1.275	646
2265	60	AV5	3.41	3.62	1.83	1.19	9.41	43.66	100.0	1.276	641
2270	60	AV5	3.40	3.61	1.82	1.20	9.37	43.40	98.0	1,272	637
2275	48	AV5	3.47	3.69	1.87	1.23	9.59	45.30	100.0	1.301	634
2280	48	AV5	3 43	3 65	1.83	1 21	9.52	44 66	100.0	1 279	635
2285	48	AV5	3 39	3 60	1.82	1 20	9.39	43 53	100.0	1 269	624
2290	48	Δ\/5	3 40	3 55	1.82	1 20	9 40	43.36	100.0	1 278	625
2295	48	Δ\/5	3 40	3 51	1.81	1 20	9.40	43.25	100.0	1 274	624
2300	70 / Q	Δ\/5	3/1	3 55	1.01	1 20	9.00 9./2	43 25	100.0	1 28/	627
2000	-0	////	0.71	0.00	1.01	1.40	0.40	TO.00	100.0	1,207	021

Page 10 of 11 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

		SSING B	ridge No.	790207	- CFCC	WEST	PILE N1		APE D4	6-42 HA	MMER
			001	001	000	TOV	OTIZ				
BL#	BLC	IYPE	CSX	CSI	CSB	15X	SIK	EIVIX	BIA	HXU	HX5
end	DI/IT	A) (F	KSI	KSI	KSI	KSI		K-II	(%)	KIPS	KIPS
2305	48	AV5	3.44	3.59	1.84	1.21	9.55	43.98	100.0	1,310	630
2310	48	AV5	3.46	3.62	1.8/	1.21	9.64	44.33	100.0	1,329	627
2315	48	AV5	3.41	3.55	1.81	1.19	9.49	43.44	98.0	1,291	628
2320	51	AV5	3.47	3.61	1.87	1.21	9.74	44.81	100.0	1,328	631
2325	51	AV5	3.41	3.54	1.82	1.19	9.51	43.61	100.0	1,290	623
2330	51	AV5	3.44	3.57	1.85	1.20	9.63	44.33	98.0	1,312	625
2335	51	AV5	3.40	3.54	1.82	1.18	9.52	43.41	96.0	1,299	629
2340	51	AV5	3.38	3.52	1.80	1.17	9.53	43.21	98.0	1,289	624
2345	51	AV5	3.41	3.54	1.82	1.18	9.60	44.09	96.0	1,297	627
2350	51	AV5	3.41	3.57	1.83	1.18	9.70	43.98	100.0	1,312	629
2355	51	AV5	3.34	3.51	1.77	1.16	9.46	42.46	96.0	1,283	622
2360	51	AV5	3.35	3.52	1.77	1.15	9.54	42.81	94.0	1,281	626
2365	51	AV5	3.29	3.46	1.73	1.13	9.34	41.62	94.0	1,252	620
2370	51	AV5	3.34	3.52	1.77	1.14	9.53	42.64	94.0	1,282	629
2375	51	AV5	3.33	3.52	1.76	1.14	9.56	42.69	93.8	1,281	629
2380	51	AV5	3.27	3.44	1.71	1.11	9.35	41.38	89.8	1,251	624
2385	51	AV5	3.32	3.50	1.75	1.13	9.61	42.97	90.0	1,277	626
2390	51	AV5	3.28	3.46	1.72	1.10	9.49	41.97	90.0	1,259	621
2395	51	AV5	3.26	3.44	1.71	1.09	9.44	41.76	89.6	1,254	624
2400	51	AV5	3.25	3.43	1.71	1.08	9.46	41.82	89.6	1.257	623
2405	51	AV5	3.27	3.46	1.71	1.08	9.54	42.50	89.6	1.263	624
2410	51	AV5	3.25	3.44	1.70	1.07	9.56	42.27	89.6	1.264	626
2415	51	AV5	3.29	3.49	1.74	1.08	9.75	43.46	89.6	1.289	629
2420	51	AV5	3.23	3.43	1.69	1.04	9.55	42.10	89.4	1.264	627
2425	51	AV5	3.26	3.45	1.71	1.06	9.71	42.88	89.4	1.277	627
2430	51	AV5	3.17	3.34	1.67	1.02	9.44	41.10	89.6	1,248	619
2435	51	AV5	3.17	3.33	1.68	1.00	9.46	40.95	89.2	1,258	622
2440	51	AV5	3.19	3.36	1.70	1.00	9.59	41.94	89.0	1.270	624
2445	51	AV5	3.17	3.33	1.71	0.98	9.60	41.85	89.2	1.278	627
2450	51	AV5	3.15	3.31	1.71	0.97	9.58	41.46	89.2	1.282	625
2455	51	AV5	3.13	3.29	1.71	0.95	9.53	41.17	89.2	1.283	625
2460	51	AV5	3.15	3.29	1.73	0.95	9.69	41.88	88.6	1,293	629
2465	51	AV5	3.15	3.29	1.75	0.94	9.72	42.08	89.0	1.306	632
2470	51	AV5	3.10	3.25	1.74	0.91	9.60	41.07	88.8	1,308	631
2475	55	AV5	3.12	3.27	1.77	0.90	9.72	41.85	88.6	1.322	633
2480	55	AV5	3.07	3.20	1.76	0.86	9.58	40.44	88.2	1.323	631
2485	55	AV5	3.04	3 18	1 77	0.83	9.50	39.84	88.4	1 326	629
2490	55	AV5	3.02	3 15	1 78	0.79	9.46	39 41	88.2	1 337	634
2495	55	AV5	3.02	3 16	1 80	0.78	9.53	39.91	88.2	1 349	637
2500	55	AV5	3.04	3 17	1.81	0.78	9.62	40.35	88.2	1,359	640
2505	55	AV5	3.04	3 16	1.81	0.76	9.68	40.38	88.4	1,363	643
2510	55	AV5	3.03	3 14	1.82	0.70	9.60	40.00	88.0	1,367	642
2515	55		3.02	3 11	1.80	0.74	9.63	30.80	88.0	1 361	642
2520	55		3.02	3 13	1.00	0.70	9.00	10 20	88.4	1 37/	647
2525	55		3.00	3 10	1.02	0.71	9.67	20 81	87.8	1 370	651
2520	58		3.01	3 11	1.02	0.03	0.75	30.85	87.6	1 38/	656
2530	50		3.02	3 12	1.01	0.07	0.70	10 50	07.0 QQ A	1 202	654
2000	50		2 05	2 10	1.04	0.07	0 70	40.02	00.0 97 1	1 220	610
2540	50		3.00	2 10	1.00	0.00	9.70 0.75	40.20	07.4 Q0 /	1,000	645
2040	00 50		0.04 0.07	0.1U 0.10	1.00	0.00	9.70	40.02	00.4 00 A	1,000	040 645
2000	50 E0		3.07	0.10 0.10		0.00	9.04 0.74	41.02	00.U	1 407	040
2000	20 50		3.03	3.10	1.02	0.02	9.74	39.10	0/.U 07 /	1,407	0/0
2000	58	AVS	3.01	3.07	1.03	0.60	9.70	39.28	ö/.4	1,396	100

Page 11 of 11 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEF	R CROS	SSING B	Bridge No.	790207	- CFCC	WEST	PILE N1		APE D4	6-42 HA	MMER
OP: GRL	-MGB								Test dat	e: 23-Ja	n-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
2565	58	AV5	3.04	3.10	1.88	0.57	9.81	40.66	88.4	1,410	662
2570	58	AV5	3.02	3.08	1.86	0.57	9.76	39.91	88.2	1,404	655
2575	58	AV5	3.01	3.07	1.86	0.55	9.71	39.63	87.8	1,401	656
2580	58	AV5	3.02	3.09	1.86	0.55	9.74	39.66	87.8	1,407	662
2585	58	AV5	3.06	3.17	1.90	0.57	9.96	41.17	88.4	1,420	661
2590	60	AV5	3.00	3.15	1.87	0.54	9.80	39.49	87.8	1,414	669
2595	60	AV5	2.93	3.13	1.84	0.48	9.75	37.93	87.0	1,402	676
2600	60	AV5	2.96	3.20	1.87	0.48	9.83	38.93	87.6	1,410	675
2605	60	AV5	3.00	3.23	1.88	0.51	9.81	38.99	87.6	1,417	674
2610	60	AV5	3.04	3.26	1.91	0.52	9.92	40.01	88.0	1,431	679
2615	60	AV5	3.01	3.19	1.90	0.50	9.67	38.57	88.0	1,430	680
2620	60	AV5	3.05	3.21	1.92	0.52	9.74	39.14	88.4	1,441	681
2625	60	AV5	3.08	3.24	1.93	0.53	9.78	39.64	88.4	1,450	688
2630	60	AV5	3.10	3.28	1.95	0.55	9.82	39.87	88.4	1,458	682
2635	60	AV5	3.08	3.34	1.95	0.52	9.74	39.29	88.6	1,455	688
2640	60	AV5	3.14	3.45	1.98	0.56	9.89	39.91	88.8	1,481	694
2645	60	AV5	3.14	3.42	1.99	0.54	9.72	39.32	88.6	1,481	693
2650	82	AV5	3.21	3.50	2.01	0.57	9.88	40.33	88.6	1,505	711
2655	82	AV5	3.28	3.57	2.05	0.62	10.04	41.38	88.6	1,531	717
2660	82	AV5	3.27	3.55	2.05	0.61	9.91	40.61	88.4	1,531	716
2665	82	AV5	3.34	3.63	2.10	0.64	10.02	41.74	88.4	1,558	720
2670	82	AV5	3.30	3.61	2.09	0.60	9.85	40.78	88.0	1,548	718
2675	82	AV5	3.30	3.65	2.09	0.60	9.92	40.90	88.2	1,545	720
2680	82	AV5	3.28	3.67	2.09	0.58	9.91	40.60	88.0	1,549	728
2685	82	AV5	3.25	3.66	2.07	0.55	9.79	39.51	87.2	1,548	737
2690	82	AV5	3.28	3.66	2.10	0.56	9.78	39.99	87.6	1,549	727
2695	82	AV5	3.32	3.69	2.11	0.58	9.87	40.54	87.2	1,568	745
2700	82	AV5	3.34	3.71	2.13	0.58	9.76	40.36	87.4	1,573	743
2705	82	AV5	3.37	3.73	2.14	0.60	9.80	40.67	86.6	1,583	746
2710	82	AV5	3.39	3.77	2.16	0.59	9.94	41.49	86.8	1,595	757
2715	82	AV5	3.45	3.87	2.19	0.61	10.10	42.26	87.2	1,616	764
2720	82	AV5	3.44	3.89	2.18	0.58	10.07	41.57	87.2	1,598	752
2725	82	AV5	3.45	3.89	2.19	0.57	9.96	40.54	87.4	1,596	738
2730	91	AV5	3.50	3.90	2.20	0.59	10.02	40.86	87.0	1,611	751
2735	91	AV5	3.51	3.82	2.22	0.60	9.89	39.85	86.8	1,632	758
2740	91	AV5	3.52	3.73	2.23	0.59	9.78	39.30	86.6	1,648	765
2745	91	AV5	3.58	3.66	2.27	0.62	9.66	39.18	87.0	1,670	766
2750	91	AV5	3.73	3.74	2.42	0.68	9.84	41.39	88.6	1,751	778
2755	91	AV5	3.69	3.77	2.40	0.65	9.76	40.75	88.4	1,736	782
2760	91	AV5	3.78	3.96	2.49	0.69	9.90	41.61	91.0	1,792	799
2765	91	AV5	3.73	3.82	2.48	0.69	9.81	42.42	89.8	1,756	783

Test date: 23-Jan-2014

GRL E Case N	ingineers Method &	, Inc. iCAP®	Results	6	PDIPLO	OT Ver.	2014.1	- Printeo	Page t: 25-Jan	1 of 2 -2014		
I-4 DE OP: G	ER CRO RL-MGB	SSING	Bridge N	No. 7902		EST PIL	E N1	А Т	PE D46	6-42 HAN e: 23-Jan	/MER -2014	
AR:	576.00 ii	n^2								S	SP: 0.14	5 k/ft3
LE:	95.00 ft	t /c								E	EM: 6,17	8 ksi
$\frac{W3.1}{CSX}$	4,030.0 I/ Max Mea	sured (Compr S	Stress			EWX.	Max Tr	ansferre	d Energ	10. 0.5 1V	0
CSI:	Max F1 c	or F2 Co	ompr. St	ress			BTA:	BETAI	ntegrity	Factor	<u> </u>	
CSB:	Compres	sion St	ress at E	Bottom			RX0:	Max Ca	ase Metl	nod Cap	acity (JC	C=0)
TSX:	Tension	Stress I	Maximur	n			RX5:	Max Ca	ase Metl	nod Cap	oacity (JC	C=0.5)
STK:	O.E. Die	sel Han	<u>nmer Str</u>	oke								
BL#	depth	BLC	TYPE	CSX	CSI	CSB	TSX	SIK	EMX	BTA	RX0	RX5
ena	JI 00 22		A\/2	KSI		KSI	KSI 0.60		K-T[10.14	(%)	KIPS	KIPS
2	23.00	2	ΑV2 Δ\/2	0.90	1.09	0.09	0.69	3.73	16.75	02.0 80.0	23 81	0
- 6	25.00	2	AV2	1.63	1.04	0.14	1.03	7 73	35.07	86.5	197	0
13	26.00	7	AV7	1.70	1.96	0.35	1.14	5.77	20.79	95.7	213	14
25	27.00	12	AV12	1.80	2.07	0.39	1.24	5.77	22.36	100.0	230	63
33	28.00	8	AV8	1.84	2.09	0.43	1.28	5.83	22.09	96.1	254	110
42	29.00	9	AV9	1.90	2.13	0.51	1.27	5.95	23.35	97.3	305	159
52	30.00	10	AV10	1.92	2.16	0.52	1.30	5.98	22.68	100.0	317	165
62	31.00	10	AV10	1.96	2.20	0.54	1.30	6.04	23.24	100.0	331	165
/4	32.00	12	AV12	1.97	2.20	0.55	1.28	6.04	22.96	100.0	338	1/5
00 QQ	33.00	12		2.03	2.20	0.59	1.27	6.23	24.03	100.0	386	207
112	35.00	13	AV13	2.00	2.20	0.00	1.27	6.42	26.69	100.0	410	207
127	36.00	15	AV15	2.13	2.40	0.70	1.27	6.42	26.37	100.0	428	251
143	37.00	16	AV16	2.16	2.44	0.74	1.25	6.48	26.78	100.0	452	267
166	38.00	23	AV23	2.11	2.35	0.83	1.21	6.42	25.65	100.0	493	308
187	39.00	21	AV21	2.07	2.33	0.84	1.19	6.25	24.86	100.0	492	310
212	40.00	25	AV25	2.10	2.35	0.90	1.16	6.36	25.21	100.0	527	329
241	41.00	29	AV29	2.18	2.44	0.97	1.15	6.61	26.43	100.0	572	346
266	42.00	25	AV25	2.42	2.69	1.06	1.28	7.43	32.16	100.0	630	3/3
290	43.00	24 24	AV24 AV24	2.40	2.75	1.10	1.20	7.49	32.90	100.0	628	385
335	45.00	21	AV24 AV21	2.39	2 71	1.00	1.25	7.30	31 66	100.0	607	382
355	46.00	20	AV20	2.41	2.75	1.02	1.27	7.36	32.18	100.0	607	392
375	47.00	20	AV20	2.41	2.80	1.01	1.26	7.41	32.01	100.0	616	409
396	48.00	21	AV21	2.44	2.83	1.00	1.26	7.52	32.39	100.0	629	426
418	49.00	22	AV22	2.41	2.81	1.01	1.21	7.45	31.65	100.0	633	428
441	50.00	23	AV23	2.43	2.81	1.04	1.20	7.59	32.21	100.0	655	451
400	51.00	24	AV24	2.51	2.88	1.09	1.23	7.90 8.02	34.35	100.0	687 701	479
492 521	52.00	27	Αν27 Δ\/29	2.51	2.74	1.12	1.17	0.02 8.27	36.00	100.0	762	526
549	54.00	28	AV23 AV28	2.55	3.13	1.17	1.21	8.63	38.64	100.0	818	541
580	55.00	31	AV29	2.72	3.26	1.66	1.21	8.91	40.39	100.0	1.101	608
611	56.00	31	AV31	2.77	3.14	1.39	1.27	8.79	40.33	100.0	943	586
643	57.00	32	AV32	2.84	3.19	1.41	1.33	8.84	41.22	100.0	948	584
675	58.00	32	AV32	2.88	3.24	1.49	1.35	8.80	41.72	100.0	969	557
705	59.00	30	AV30	2.92	3.19	1.49	1.41	8.79	42.27	100.0	978	540
733	61.00	28	AV28	2.97	3.23	1.51	1.42	8.80	42.64	100.0	1,009	555
702	62.00	29 20	AV29 AV/29	3.03	3.20 3.20	1.51	1.44	0.00	42.99 10 70	100.0	1,002	553
818	63.00	27	AV27	3.11	3.33	1.43	1 46	8 83	42 87	100.0	1.127	549
848	64.00	30	AV30	3.15	3.37	1.47	1.42	8.85	42.68	100.0	1,183	561
879	65.00	31	AV31	3.23	3.45	1.53	1.41	9.01	43.33	100.0	1,248	589

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEE	4 DEER CROSSING Bridge No. 790207 - CFCC WEST PILE N1 APE D46-42 HA									MMER					
OP: GF	RL-MGB								Test date: 23-Jan-201						
BL#	depth	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5			
end	ft	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips			
913	66.00	34	AV34	3.26	3.48	1.53	1.36	9.07	43.37	100.0	1,282	604			
947	67.00	34	AV34	3.32	3.54	1.56	1.36	9.20	44.11	100.0	1,319	601			
981	68.00	34	AV34	3.33	3.62	1.56	1.36	9.23	44.45	100.0	1,305	588			
1014	69.00	33	AV33	3.40	3.71	1.59	1.41	9.48	45.82	100.0	1,336	606			
1046	70.00	32	AV32	3.38	3.71	1.56	1.40	9.45	45.51	100.0	1,328	589			
1081	71.00	35	AV35	3.35	3.68	1.51	1.40	9.40	44.71	100.0	1,323	585			
1118	72.00	37	AV37	3.32	3.64	1.49	1.40	9.42	44.51	100.0	1,318	574			
1149	73.00	31	AV31	3.24	3.52	1.43	1.33	9.28	43.52	100.0	1,288	529			
1186	74.00	37	AV37	3.21	3.43	1.42	1.31	9.41	43.65	100.0	1,293	517			
1224	75.00	38	AV38	3.11	3.26	1.39	1.21	9.37	42.51	100.0	1,284	458			
1267	76.00	43	AV43	3.02	3.08	1.39	1.09	9.42	41.99	100.0	1,284	411			
1310	77.00	43	AV43	2.92	3.25	1.34	0.97	9.48	41.13	100.0	1,269	404			
1357	78.00	47	AV47	2.65	2.79	1.25	0.79	8.71	36.35	99.8	1,230	417			
1404	79.00	47	AV47	2.96	3.08	1.57	0.90	8.92	41.30	100.0	1,353	427			
1461	80.00	57	AV57	3.03	3.14	1.85	0.71	9.05	42.23	98.9	1,510	631			
1527	81.00	66	AV66	3.02	3.05	1.96	0.71	9.04	42.20	96.9	1,551	762			
1611	82.00	84	AV84	3.01	3.06	2.05	0.77	9.14	42.39	99.9	1,545	869			
1714	83.00	103	AV103	2.99	3.07	2.09	0.90	9.28	43.36	100.0	1,474	895			
1820	84.00	106	AV104	2.99	3.10	2.17	0.92	9.37	43.81	100.0	1,448	903			
1917	85.00	97	AV97	3.13	3.26	2.19	1.02	9.49	44.99	100.0	1,408	876			
2003	86.00	86	AV86	3.29	3.44	2.09	1.12	9.49	45.54	100.0	1,341	816			
2079	87.00	76	AV76	3.40	3.54	1.99	1.18	9.54	45.86	100.0	1,287	766			
2148	88.00	69	AV69	3.45	3.58	1.95	1.19	9.55	45.68	100.0	1,283	725			
2211	89.00	63	AV62	3.47	3.61	1.93	1.18	9.56	44.96	100.0	1,312	692			
2271	90.00	60	AV60	3.45	3.66	1.88	1.19	9.54	44.74	99.7	1,299	657			
2319	91.00	48	AV48	3.43	3.59	1.84	1.21	9.51	44.00	99.8	1,295	628			
2370	92.00	51	AV51	3.38	3.53	1.80	1.17	9.54	43.23	96.7	1,290	625			
2421	93.00	51	AV51	3.28	3.46	1.72	1.09	9.54	42.32	90.1	1,266	625			
2472	94.00	51	AV51	3.16	3.32	1.71	0.97	9.59	41.62	89.1	1,282	626			
2527	95.00	55	AV55	3.04	3.15	1.80	0.77	9.62	40.16	88.2	1,353	640			
2585	96.00	58	AV58	3.03	3.10	1.85	0.61	9.78	40.12	87.9	1,400	657			
2645	97.00	60	AV60	3.04	3.26	1.92	0.52	9.79	39.26	88.1	1,439	682			
2727	98.00	82	AV82	3.33	3.70	2.11	0.59	9.92	40.86	87.7	1,564	734			
2765	98.42	91	AV38	3.63	3.79	2.34	0.64	9.82	40.60	88.2	1,703	773			

Test date: 23-Jan-2014

GRL E	ngineers /lethod &	, Inc. iCAP®	Results	;		Page 1 of 2 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014						
I-4 DEE <u>OP: G</u> F	ER CROS RL-MGB	SSING	Bridge N	No. 7902	207 - CF	FCC WE	EST PIL	E N1	A T	PE D46	6-42 HAN e: 23-Jar	MMER 1-2014
AR:	576.00 ir	2^ו								5	SP: 0.14	5 k/ft3
	95.00 ft									E	EM: 6,17	8 ksi 0
$\frac{1}{0}$	4,030.0 l/ Max Mea	sured (Compr S	Stress		EWX.	Max Tr	ansferre	d Energ	10. 0.3 1V	0	
CSI: I	Max F1 c	or F2 Co	ompr. St	ress			BTA:	BETA I	ntegrity	Factor	33	
CSB: (Compres	sion St	ress at E	Bottom			RX0:	Max Ca	ase Metl	hod Cap	bacity (JC	C=0)
TSX:	Tension 3	Stress I	Maximur	n			RX5:	Max Ca	ase Metl	hod Cap	bacity (JC	C=0.5)
<u>SIK: (</u>	D.E. Dies	sel Han	1mer Str	oke	001	000	TOV	OTV			DVO	
BL#	Elev.	BLC bl/ft	TIPE	USX kei	CSI kei	USB kei	15X kei	SIK ft		BIA (%)	Kine Kine	KX5 kins
2	30.4	2	AV2	0.96	1 09	0.09	0.69	3 73	12 14	82 0	53	кірз 0
4	29.4	2	AV2	0.85	1.04	0.14	0.47	3.06	16.75	80.0	81	Ő
6	28.4	2	AV2	1.63	1.99	0.34	1.03	7.73	35.08	86.5	197	0
13	27.4	7	AV7	1.70	1.96	0.35	1.14	5.77	20.79	95.7	213	14
25	26.4	12	AV12	1.80	2.07	0.39	1.24	5.77	22.36	100.0	230	63
33	25.4	8	AV8	1.84	2.09	0.43	1.28	5.83	22.09	96.1	254	110
42 52	24.4 23.4	10	ΑV9 ΔV/10	1.90	2.13	0.51	1.27	5.95	23.33	97.3	305	159
62	22.4	10	AV10	1.96	2.20	0.52	1.30	6.04	23.25	100.0	331	165
74	21.4	12	AV12	1.97	2.20	0.55	1.28	6.04	22.97	100.0	338	175
86	20.4	12	AV12	2.03	2.25	0.59	1.27	6.17	24.64	100.0	362	183
99	19.4	13	AV13	2.06	2.28	0.63	1.27	6.23	25.08	100.0	386	208
112	18.4	13	AV13	2.13	2.37	0.67	1.29	6.42	26.69	100.0	410	227
1/2/	17.4	15	AV15	2.13	2.40	0.70	1.27	6.42 6.49	26.38	100.0	428	251
143	10.4	23	AV10 AV23	2.10	2.44	0.74	1.25	0.40 6 42	20.79	100.0	402	308
187	14.4	21	AV21	2.07	2.33	0.84	1.19	6.25	24.82	100.0	492	310
212	13.4	25	AV25	2.10	2.35	0.90	1.16	6.36	25.22	100.0	527	329
241	12.4	29	AV29	2.18	2.44	0.97	1.15	6.61	26.44	100.0	572	346
266	11.4	25	AV25	2.42	2.69	1.06	1.28	7.43	32.16	100.0	630	373
290	10.4	24	AV24	2.45	2.75	1.10	1.28	7.49	32.96	100.0	647	388
314	9.4 8.4	24 21	AV24 ΔV/21	2.42	2.72	1.06	1.25	7.30	32.27	100.0	628 607	382
355	7.4	20	AV20	2.41	2.75	1.02	1.27	7.36	32.19	100.0	607	392
375	6.4	20	AV20	2.41	2.80	1.01	1.26	7.41	32.02	100.0	616	408
396	5.4	21	AV21	2.44	2.83	1.00	1.26	7.52	32.40	100.0	629	425
418	4.4	22	AV22	2.41	2.81	1.01	1.21	7.45	31.66	100.0	633	428
441	3.4	23	AV23	2.43	2.81	1.04	1.20	7.59	32.22	100.0	655	451
400 /02	2.4 1 /	24 27	AV24 ΔV/27	2.51	2.88	1.09	1.23	7.90	34.30	100.0	087 721	479 505
521	0.4	29	AV27 AV29	2.51	2.74	1.12	1.17	8.27	36.00	100.0	762	526
549	-0.6	28	AV28	2.66	3.13	1.24	1.23	8.63	38.62	100.0	818	541
580	-1.6	31	AV29	2.72	3.26	1.66	1.21	8.91	40.39	100.0	1,100	608
611	-2.6	31	AV31	2.77	3.14	1.39	1.27	8.79	40.33	100.0	942	586
643	-3.6	32	AV32	2.84	3.19	1.41	1.33	8.84	41.23	100.0	948	584
6/5 705	-4.6	32	AV32	2.88	3.24	1.49	1.35	8.80	41.72	100.0	969	557
705	-5.6	28	AV30 AV28	2.92	3.19	1.49	1.41	0.79 8.80	42.27	100.0	970	540 555
762	-7.6	29	AV29	3.03	3.28	1.51	1.44	8.85	42.99	100.0	1,062	564
791	-8.6	29	AV29	3.07	3.29	1.45	1.45	8.84	42.72	100.0	1,091	553
818	-9.6	27	AV27	3.11	3.33	1.43	1.46	8.83	42.88	100.0	1,127	549
848	-10.6	30	AV30	3.15	3.37	1.47	1.42	8.85	42.68	100.0	1,183	561
879	-11.6	31	AV31	3.23	3.45	1.53	1.41	9.01	43.32	100.0	1,248	589

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEER CROSSING	Bridge No. 790	207 - CFCC WE	ST PILE N1

I-4 DEE	DEER CROSSING Bridge No. 790207 - CFCC WEST PILE N1 APE D4										6-42 HAI	MMER
OP: GF	RL-MGB								Т	est date	e: 23-Jar	า-2014
BL#	Elev.	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end		bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
913	-12.6	34	AV34	3.26	3.48	1.53	1.36	9.07	43.36	100.0	1,281	604
947	-13.6	34	AV34	3.32	3.54	1.56	1.36	9.20	44.10	100.0	1,319	601
981	-14.6	34	AV34	3.33	3.62	1.56	1.36	9.23	44.45	100.0	1,305	588
1014	-15.6	33	AV33	3.40	3.71	1.59	1.41	9.48	45.82	100.0	1,336	606
1046	-16.6	32	AV32	3.38	3.71	1.56	1.40	9.45	45.52	100.0	1,328	589
1081	-17.6	35	AV35	3.35	3.68	1.51	1.40	9.40	44.71	100.0	1,323	585
1118	-18.6	37	AV37	3.32	3.64	1.49	1.40	9.42	44.51	100.0	1,318	574
1149	-19.6	31	AV31	3.24	3.52	1.43	1.33	9.28	43.52	100.0	1,288	529
1186	-20.6	37	AV37	3.21	3.43	1.42	1.31	9.41	43.65	100.0	1,293	517
1224	-21.6	38	AV38	3.11	3.26	1.39	1.21	9.37	42.51	100.0	1,284	458
1267	-22.6	43	AV43	3.02	3.08	1.39	1.09	9.42	41.98	100.0	1,283	411
1310	-23.6	43	AV43	2.92	3.25	1.34	0.97	9.48	41.13	100.0	1,269	404
1357	-24.6	47	AV47	2.65	2.79	1.25	0.79	8.71	36.35	99.8	1,230	417
1404	-25.6	47	AV47	2.96	3.08	1.57	0.90	8.92	41.30	100.0	1,353	427
1461	-26.6	57	AV57	3.03	3.14	1.85	0.71	9.05	42.23	98.9	1,510	631
1527	-27.6	66	AV66	3.02	3.05	1.96	0.71	9.04	42.20	96.9	1,551	762
1611	-28.6	84	AV84	3.01	3.06	2.05	0.77	9.14	42.38	99.9	1,545	869
1714	-29.6	103	AV103	2.99	3.07	2.09	0.90	9.28	43.36	100.0	1,474	895
1820	-30.6	106	AV104	2.99	3.10	2.17	0.92	9.37	43.82	100.0	1,448	902
1917	-31.6	97	AV97	3.13	3.26	2.19	1.02	9.49	45.00	100.0	1,408	876
2003	-32.6	86	AV86	3.29	3.44	2.09	1.12	9.49	45.55	100.0	1,341	816
2079	-33.6	76	AV76	3.40	3.54	1.99	1.18	9.54	45.86	100.0	1,287	766
2148	-34.6	69	AV69	3.45	3.58	1.95	1.19	9.55	45.69	100.0	1,282	725
2211	-35.6	63	AV62	3.47	3.61	1.93	1.18	9.56	44.95	100.0	1,312	692
2271	-36.6	60	AV60	3.45	3.66	1.88	1.19	9.54	44.74	99.7	1,299	657
2319	-37.6	48	AV48	3.43	3.59	1.84	1.21	9.51	43.99	99.8	1,294	628
2370	-38.6	51	AV51	3.38	3.53	1.80	1.17	9.54	43.23	96.7	1,290	625
2421	-39.6	51	AV51	3.28	3.46	1.72	1.09	9.54	42.32	90.1	1,266	625
2472	-40.6	51	AV51	3.16	3.32	1.71	0.97	9.59	41.62	89.1	1,282	626
2527	-41.6	55	AV55	3.04	3.15	1.80	0.77	9.62	40.16	88.2	1,353	640
2585	-42.6	58	AV58	3.03	3.10	1.85	0.61	9.78	40.11	87.9	1,400	657
2645	-43.6	60	AV60	3.04	3.26	1.92	0.52	9.79	39.25	88.1	1,439	682
2727	-44.6	82	AV82	3.33	3.70	2.11	0.59	9.92	40.85	87.7	1,564	734
2765	-45.0	91	AV38	3.63	3.79	2.34	0.64	9.82	40.59	88.2	1,703	773

GRL Engineers, Inc.

Pile Driving Analyzer ®

I-4 DEER CROSSING

CFCC WEST PILE N1

<u>Project Information</u> PROJECT: I-4 DEER CROSSING PILE NAME: CFCC WEST PILE N1 DESCR: APE D46-42 HAMMER OPERATOR: GRL-MGB FILE: CFCC WEST PILE N1-MH 1/23/2014 2:44:51 PM Blow Number 159

Pile Properties

95.00 ft LE AR 576.00 in^2 EΜ 6178 ksi SP 0.145 k/ft3 WS 14050.0 f/s EA/C 253.3 ksec/ft 2L/C 13.50 ms 0.50 [] JC LP 37.70 ft

Quantity Results

CSX 2.09 ksi CSI 2.34 ksi CSB 0.87 ksi TSX 1.23 ksi STK 6.40 ft EMX 25.72 k-ft BTA 100.0 (%) RX0 509 kips RX5 319 kips

Sensors

F1: [F978] 94.4 (0.98) F2: [A407] 99.3 (0.98) A1: [19932] 1020 g's/v (1.02) A2: [29018] 1150 g's/v (1.02) CLIP: OK

GRL Engineers, Inc.

Pile Driving Analyzer ®

Pile Properties

LE	95.00	ft
AR	576.00	in^2
EM	6178	ksi
SP	0.145	k/ft3
WS	14050.0	f/s
EA/C	253.3	ksec/ft
2L/C	13.70	ms
JC	0.50	[]
LP	98.37	ft

CSX	3.73	ksi
CSI	3.76	ksi
CSB	2.42	ksi
TSX	0.69	ksi
STK	9.78	ft
EMX 4	12.70	k-ft
BTA	90.0	(%)
RX0	1725	kips
RX5	783	kips

Sensors

F1: [F978] 94.4 (1) F2: [A407] 99.3 (1) A1: [19932] 1020 g's/v (1) A2: [29018] 1150 g's/v (1) CLIP: OK

	0	F	PILI	E DRI	VING IN	FORM	ATION		Constru
St	ructure N	Numbe	r: _	Expe	ermental	Pile	No 1		
FIN PROJ. ID # $\frac{1}{24}$	<u>188464</u> астиац	- <u> - 520</u> /AUTH L) ENGT	D/	ATE <u>1-23-11</u> BE	STATIC	ON NO	PILE NO.	N-1
HAMMER TYPE	46-42	F	RATE	D ENERG	Y 114.104	Ft/165 OPI	ERATING RAT	E <u>va</u> r	123
REF. ELEV 5	3.37 '		MIN.	TIP ELEV		PILI	E CUTOFF ELE	EV	/
DRIVING CRITERIA	ΑΕ	xperin	ente	al Pi	le 24"	Square	Concrete	Pile	
PILE CUSHION TH	CKNESS /	AND MA	TERI	al <u>Pi</u>	ne Piyc	Lood	8 3/4 "		
HAMMER CUSHION	N THICKNE	ESS ANI	D MAT	FERIAL	31/2" (2	- 1', Micar	ta / 3- 1/2	" Aluminu.	n)
WEATHER <u>Cle</u>	ar	_ TEMP	_57	STAR	TTIME 2	36 pm		E1; -/e	s pm
PILE DATA		1				,			
PAY ITEM NO.	N/	'A			WORK	ORDER NO.	N /	/ A	
MANUFACTURED E	BY			T.	B.M./B.M. EL	ev <u><i>N</i>/A</u>	GROUND	ROD READ	N/A
DATE CAST7	-24-13		ROD	READ	N/A	PILE HE	AD ROD READ	D /	V/A
MANUFACTURER'S	PILE NO.		<u>N /</u>	A	H.I/	V/AI	PILE HEAD EL	EV53	3.40'
PILE HEAD CHAMF	ER/	<u>4 X</u>	3		_PILE TIP EL	EV	-16.60		
		<u>4 X</u>	<u>3</u>	/	GR	OUND ELEV.	4	1.20	
		ME:	Gor	129/0	Silva		TIN #:	> 410280 6.4	· · · · · · · · · · · · · · · · · · · ·
ED HOLE LOAD TEST CHECK	ET CHECK	ON F SPLICE	CODE		PILE L	ENGTH		EXTENSION	BUILD UP
SPLICE / E PREFORM DYNAMIC PAY SET	NO PAY SE REDRIVE	EXTRACTI	PILE TYPE	BATTER	ORIGINAL FURNISHED	TOTAL LENGTH WITH EXTENSION	PENETRATION BELOW GROUND	AUTHORIZED	ACTUAL
/ 20.0 / /	11	11	/	/	100.0	/	87.80'	/	/
OTES: Prede II	ed 20) .	L		1		I	·	
- Experimen	-01	Pile I	Yo. 1	P,	le crehin	0 8 ³ /, "			
- Fuel sett	inc st	lastan	/	J 38	n psi	0/4			
- Pile PNI	I and	s.vev	<u> </u>		- 121	<u></u>	- 1.7 <u>000</u> - 1.716-		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	any	_cp							
		t							
r Trainee experience e me of CTQP Trainee t	vidence onl being superv	<i>ly:</i> vised by t	he Qu	alified Insp	ector:			· · · ·	
artify the Dile Datation D	- L					С	TQP Trainee		
entity the Pile Driving R	ecord accur	racy and i	hat th	e named a	bove Trainee h	as observed th	e full pile installa	ation:	
						Bal. IVAK	T.		

-						
Bridge		Experim.	Pile A	Vo. 1	1-23-14	
End/Bent					· · · · · · · · · · · · · · · · · · ·	
Pile		No. /				
Reference	Elevation	53	.37'			
Depth	Blows	Stroke	Fuel S.		Comments	
12	•					
23				1		
34						7
45						Starting 380
56						-
67						
78						
89	5					FSI
910						2
1011	i.					
1112	8					- 4
1213	e l					
13-14						
14-15		I				
15-16						
16-17						
17-18				_		· · · · · · · · · · · · · · · · ·
18-19						
19-20						
20-21	-5			ļ		· · · · · · · · · · · · · · · · ·
21-22	<u> </u>			I		
22-23	6	5.11	380	 	22 2 beginning - start	2:36 pm
23-24			3.80	<u> </u>		
24-25				L		
25-26	7	5.71				
26-27	12	5.70		 		
27-28	8	5.46		 		
28-29	4	5.87		 		
29-30	10	5.96				
21 22	10	5.74				
22.22	12	6.0			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·
32-33	12	6.00			· · · · · · · · · · · · · · · · · · ·	-1
33-34	13	6.22				
35-26	10	6.24				
36-37		6.27			To shark 2.50	- Sha 2:41
37-38	27	6.13			12-31917 /: 30 pn	- Jop 2.71 Check gauges
38-39	21	6.17	1			-
	5	0.17				

N-13

Bridge		De	er Brida	e Experimental Pile No 1.
End/Bent				
Pile		No.	1	/-23-14
Reference	Elevation	53	3.37'	
Depth	Blows	Stroke	Fuel S.	Comments
39-40	25	6.17	380	
40-41	29	6.52	400	
41-42	25	7.33	11	
42-43	24	7.39	AL.	
43-44	24	7.26	11	
44-45	21	7.21	- 11	
45-46	20	7.27	11	
46-47	. 20	7.32	450	
47-48	21	7.42	1)	
48-49	22	7.2.4	11	
49-50	23	7.49	- 11	
50-51	24	7.79	480	
51-52	27	7.87	11	
52-53	29	8.16	520	
53 -54	28	8.28)	
54-55	31	8.57		
55-56	31	8.67		
56-57	32	7.91		
57-58	32	8.68		
58-59	30	8.68	540	
59-60	28	8.69	540	
60-61	29	8.73	i	
61-62	29	8.73		
62-63	27	8.72	-	
63-64	30	8.74		
64-65	31	8.69		
65-66	34	8.96		•
66-67	34	9.09		
67-68	34	9.12		
68 -69	33	9.36		
69-70	32	9.32		
70-71	35	9.27		
71-72	37	9.3	V and part	· · ·
72-73	3/	9.17		
73-74	37	9.27	-	
74-75	38	9.24		Smoke - Burn.
75-76	43	8.61	ł	
76-77	43	9.32	650	Stopped 3:49 pm -
77-78	47	8.41	650	Re-storted 4:08 p.m.

Change coshion. 9"

N-1 (1)

	V	T REVIEW I	DRIVING LC	DG
Bridge		Deer Br	idge -	Experimental Pile No.1
End/Bent			-0	9
Pile		No. 1		1-23-14
Reference	Elevation	53	3.37'	
Depth	Blows	Stroke	Fuel S.	Comments
78-79	47	8.72	630	
79-80	57	8.93	1	
80-81	66	8.83	ł	
81-82	84	9.01	680	
82-83	103	9.02	720	
8 3-84	106	9.18	1	
8 4-85	97	9.42		
85-86	86	9.33		
8 6-88	76	9.42		
8 7-88	69	9.43		
88-89	63	9.44		
89 -90	60	9.33		
90- 91	48	9.38		
91-92	5/	9-31		Smore
92-93	51	9.28	an and the set	Smoke
93-94	5/	9.47		Smoke
94-95	55	9.36		Smoke
95-96	58	9.66		
96-97	60	9.60		- Reference broke
97-98	82	9.56		
98-99	38	9.55	+	spall in sile @ 4:46 p.m= 98-5"
99-100				
total	2768	blowe		
- Opera	tion	stopped	97	4:46 pm. Pile head had a
mayor	<u></u> //	•		
				· · · · · · · · · · · · · · · · · · ·

PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

Test date: 24-Jan-2014

208

GRL E Case I	Engineers, Method & i	Inc. iCAP® R	lesults			PDIP	LOT Ve	er. 2014. ⁻	1 - Printe	Page 1 d: 25-Jar	1 of 13 1-2014
I-4 DE OP: G	ER CROS RL-MGB	SING Br	ridge No.	790207	- CFCC	EAST P	ILE N2		APE D4 Test dat	6-42 HAI e: 24-Jar	MMER 1-2014
AR:	576.00 in	^2								SP: 0.14	5 k/ft3
LE: WS: 1	95.00 ft 4,050.0 f/s	3								EM: 6,17 JC: 0.5	'8 ksi 0
CSX: CSI:	Max Meas Max F1 or	sured Co F2 Com	mpr. Stre	ess ss		EM) BTA	X: Max : BET	Transfer A Integri	rred Ener tv Factor	gу	
CSB:	Compress	sion Stre	ss at Bot	tom		RXC): Max	Case Me	ethod Ca	pacity (J	C=0)
TSX:	Tension S	tress Ma	aximum			RX5	5: Max	Case Me	ethod Ca	pacity (J	C=0.5)
<u>SIK:</u> BI#		EI Hamm	CSX		CSB	Tev	сти		DTV	DV0	DV5
end	bl/ft		ksi	ksi	ksi	ksi	STR ft	⊑ivi⊼ k-ft	(%)	kins	kins
5	5	AV5	1.71	2.11	0.54	1.07	7.08	29.37	97.6	314	21
10	5	AV5	2.07	2.58	0.70	1.33	6.33	28.75	100.0	408	109
15	10	AV5	2.09	2.54	0.73	1.33	6.02	25.99	100.0	430	167
20	10	AV5	2.09	2.49	0.76	1.32	5.95	25.26	100.0	446	190
25	10	AV5	2.29	2.73	0.90	1.40	6.71	31.50	100.0	530	264
30	10	AV5	2.39	2.82	0.99	1.43	6.93	32.93	100.0	582	300
35	11	AV5	2.50	2.96	1.10	1.45	7.28	35.18	100.0	646 700	360
40	10		2.62	3.09	1.20	1.47	7.64	37.73	100.0	708 791	43 I 500
40	12		2.72	3.31	1.33	1.49	7.94 8.00	39.83	100.0	808	525
55	13	AV5	2.81	3.34	1.42	1.48	8.05	40.66	100.0	839	552
60	13	AV5	2.79	3.30	1.42	1.47	7.86	39.37	100.0	836	540
67	14	AV5	2.87	3.42	1.51	1.50	8.11	40.85	100.0	886	584
72	14	AV5	2.88	3.41	1.50	1.50	8.13	40.92	100.0	881	603
77	14	AV5	2.87	3.38	1.48	1.50	8.06	40.13	100.0	875	596
82	15	AV5	2.91	3.42	1.51	1.50	8.16	40.81	100.0	890	612
8/	15	AV5	2.93	3.45	1.52	1.50	8.24	41.40	100.0	895	638
92	10		2.92	3.45	1.52	1.49	0.19	41.00	100.0	090 801	564
102	16	AV5	2.99	3 55	1.51	1.51	8 40	42 21	100.0	903	578
107	16	AV5	2.97	3.54	1.51	1.48	8.32	41.34	100.0	890	567
112	19	AV5	2.98	3.57	1.52	1.48	8.34	41.29	100.0	899	550
117	19	AV5	3.02	3.63	1.57	1.48	8.49	42.32	100.0	926	568
122	19	AV5	2.99	3.60	1.55	1.45	8.36	41.79	100.0	912	546
127	19	AV5	2.96	3.52	1.52	1.44	8.28	41.31	100.0	897	533
133	19		3.03	3.58	1.58	1.46	8.50	42.35	100.0	930	559
1/3	19		3.01	3.57	1.57	1.45	0.40 8.45	42.04 /1 08	100.0	923	538
148	19	AV5	3.03	3.60	1.58	1 44	8 51	42 19	100.0	934	525
153	23	AV5	2.97	3.53	1.53	1.42	8.29	40.38	100.0	906	483
158	23	AV5	2.99	3.57	1.55	1.42	8.38	40.70	100.0	918	489
163	23	AV5	3.02	3.62	1.57	1.42	8.48	41.35	100.0	927	488
168	23	AV5	2.98	3.57	1.54	1.40	8.32	40.65	100.0	909	476
173	24	AV5	2.99	3.59	1.56	1.41	8.39	40.70	100.0	922	480
1/8 100	24		3.03 2.02	3.03 3.50	1.59	1.42	0.00 8 20	41.03	100.0	944 011	491 170
188	24 94	AV5	2.90	3.00	1.04	1 40	8 71	42.20	100.0	958	479
193	24	AV5	3.04	3.66	1.59	1.41	8.59	41.86	100.0	944	481
199	25	AV5	3.01	3.64	1.57	1.39	8.46	41.06	100.0	928	472
204	25	AV5	3.06	3.69	1.61	1.41	8.67	41.99	100.0	956	478
209	25	AV5	3.06	3.71	1.60	1.39	8.70	42.53	100.0	947	497
214	25	AV5	3.07	3.73	1.62	1.39	8.73	42.64	100.0	961	487
219	25	AV5	3.05	3.70	1.59	1.38	8.63	42.00	100.0	939	476

Page 2 of 13

			•
PDIPLOT	Ver. 2014.1	- Printed:	25-Jan-2014

I-4 DEEF	R CROS	SSING B	ridge No.	790207	- CFCC	EAST P	ILE N2		APE D4	6-42 HA	MMER
OP: GRL	-MGB								l est dat	e: 24-Jar	า-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft	• • /-	ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
224	25	AV5	3.05	3.70	1.61	1.38	8.66	41.92	100.0	951	479
229	25	AV5	3.10	3.77	1.66	1.40	8.86	43.45	100.0	979	493
234	25	AV5	3.05	3.72	1.60	1.38	8.70	42.33	100.0	949	484
239	25	AV5	3.07	3.75	1.63	1.39	8.80	42.52	100.0	962	491
244	25	AV5	3.10	3.79	1.64	1.38	8.92	43.31	100.0	970	499
249	26	AV5	3.11	3.79	1.66	1.39	8.95	43.49	100.0	985	498
254	26	AV5	3.07	3.77	1.61	1.37	8.77	42.68	100.0	953	493
259	26	AV5	3.10	3.82	1.63	1.39	8.91	43.55	100.0	965	511
265	26	AV5	3.00	3.70	1.55	1.37	8.54	40.80	100.0	917	492
270	26	AV5	2.97	3.67	1.52	1.36	8.48	40.32	100.0	904	495
275	24	AV5	3.07	3.79	1.60	1.38	8.79	42.53	100.0	949	497
280	24	AV5	3.07	3.79	1.61	1.38	8.87	42.97	100.0	955	499
285	24	AV5	3.04	3.74	1.59	1.39	8.72	41.91	100.0	941	492
290	24	AV5	3.00	3.71	1.55	1.38	8.58	41.06	100.0	919	490
295	24	AV5	3.05	3.76	1.58	1.38	8.71	42.35	100.0	937	496
300	23	AV5	2.98	3.68	1.52	1.38	8.49	40.41	100.0	903	491
305	23	AV5	3.06	3.78	1.57	1.38	8.74	42.33	100.0	930	493
310	23	AV5	3.01	3.72	1.55	1.38	8.60	41.23	100.0	921	492
315	23	AV5	3.09	3.84	1.60	1.37	8.83	43.20	100.0	949	499
320	20	AV5	3.05	3.79	1.58	1.38	8.72	42.16	100.0	940	498
325	20	AV5	2.94	3.64	1.49	1.37	8.30	39.67	100.0	889	503
331	20	AV5	3.05	3.76	1.58	1.38	8.65	42.23	100.0	937	509
336	20	AV5	3.12	3.82	1.62	1.40	8.90	43.72	100.0	962	516
341	20	AV5	3.12	3.82	1.63	1.40	8.90	43.99	100.0	970	516
346	20	AV5	3.12	3.82	1.61	1.41	8.92	43.71	100.0	963	518
351	20	AV5	3.11	3.80	1.62	1.41	8.82	43.13	100.0	965	505
356	20	AV5	3.15	3.85	1.63	1.40	8.99	44.11	100.0	970	513
361	22	AV5	3.14	3.85	1.63	1.40	8.95	43.58	100.0	970	511
366	22	AV5	3.12	3.81	1.62	1.39	8.83	42.77	100.0	969	513
371	22	AV5	3.14	3.83	1.63	1.38	8.90	43.39	100.0	973	521
376	22	AV5	3.16	3.85	1.65	1.39	8.93	43.39	100.0	991	529
381	22	AV5	3.15	3.83	1.64	1.39	8.87	42.83	100.0	989	544
386	28	AV5	3.19	3.89	1.67	1.39	9.01	43.18	100.0	1,022	566
391	28	AV5	3.18	3.88	1.68	1.39	8.97	42.84	100.0	1,024	576
397	28	AV5	3.15	3.84	1.62	1.37	8.82	42.13	100.0	998	584
402	28	AV5	3.23	3.93	1.67	1.39	9.12	44.07	100.0	1,035	594
407	28	AV5	3.21	3.90	1.68	1.38	8.98	43.18	100.0	1,042	597
412	21	AV5	3.25	3.96	1.69	1.39	9.13	44.45	100.0	1,048	601
417	21	AV5	3.25	3.96	1.69	1.38	9.08	44.39	100.0	1,049	604
422	21	AV5	3.25	3.97	1.70	1.39	9.06	44.02	100.0	1,057	607
427	21	AV5	3.29	4.02	1.70	1.38	9.16	45.05	100.0	1,065	616
432	28	AV5	3.27	4.00	1.70	1.37	9.09	44.32	100.0	1,069	625
437	28	AV5	3.25	3.97	1.70	1.36	8.95	43.75	100.0	1,071	636
442	28	AV5	3.33	4.06	1.72	1.37	9.20	45.15	100.0	1,092	644
447	28	AV5	3.33	4.06	1.74	1.37	9.19	45.21	100.0	1,104	650
452	28	AV5	3.31	4.04	1.74	1.37	9.07	44.43	100.0	1,108	648
457	28	AV5	3.33	4.07	1.74	1.36	9.09	44.89	100.0	1,108	658
463	31	AV5	3.39	4.13	1.79	1.37	9.31	46.16	100.0	1,140	666
468	31	AV5	3.35	4.08	1.76	1.36	9.12	44.79	100.0	1,122	664
473	31	AV5	3.38	4.12	1.78	1.36	9.22	45.76	100.0	1,132	674
478	31	AV5	3.38	4.11	1.77	1.36	9.18	45.35	100.0	1,127	674
483	31	AV5	3.38	4.11	1.77	1.35	9.16	45.25	100.0	1,134	680

Page 3 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEF	R CROS	SSING B	ridge No.	790207	- CFCC	EAST P	ILE N2		APE D4	6-42 HAI	MMER
OP: GRL	-MGB								l est dat	e: 24-Jar	า-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft	A) (F	ksi	ksi	ksi	ksi	ft	k-tt	(%)	kips	kips
488	31	AV5	3.46	4.20	1.82	1.34	9.44	46.77	100.0	1,160	688
493	35	AV5	3.42	4.14	1./9	1.33	9.27	45.47	100.0	1,14/	686
498	35	AV5	3.33	4.03	1./3	1.32	8.91	42.94	100.0	1,115	681
503	35	AV5	3.46	4.1/	1.84	1.34	9.34	46.02	100.0	1,182	695
508	35	AV5	3.46	4.15	1.84	1.34	9.30	45.80	100.0	1,183	692
513	35	AV5	3.31	3.96	1./3	1.31	8.75	42.42	100.0	1,116	688
518	35	AV5	3.53	4.21	1.88	1.33	9.41	47.09	100.0	1,216	703
523	35	AV5	3.58	4.28	1.90	1.31	9.39	47.48	100.0	1,230	/10
529	34	AV5	3.54	4.23	1.88	1.30	9.24	46.46	100.0	1,219	/11
534	34	AV5	3.59	4.26	1.91	1.31	9.36	47.19	100.0	1,243	709
539	34	AV5	3.38	4.03	1.87	1.20	9.36	41.73	100.0	1,229	669
544	34	AV5	3.72	4.40	2.16	1.33	9.33	48.14	100.0	1,385	711
549	34	AV5	3.72	4.40	2.15	1.32	9.33	48.01	100.0	1,383	716
554	34	AV5	3.72	4.39	2.12	1.32	9.30	48.25	100.0	1,379	725
559	35	AVS	3.74	4.41	2.16	1.32	9.35	48.38	100.0	1,402	726
204 500	30	AVS	3.74	4.41	2.15	1.32	9.34	48.00	100.0	1,398	731
209 574	30		3.73	4.39	2.12	1.32	9.29	48.02	100.0	1,389	721
574	30		3.71	4.30	2.11	1.02	9.20	47.40	100.0	1,309	731
579	30		3.79 2.70	4.44	2.19	1.02	9.52	49.01	100.0	1,402	740
504	25		3.70 2.70	4.04	2.09	1.01	9.20	47.73	100.0	1,303	730
505	30		3.70	4.00	2.00	1.31	9.20	47.54	100.0	1 300	740
600	30		3.75	4.30	2.12	1.30	9.39	40.41	100.0	1 / 1 2	755
605	30		3.70	4.40	2.10	1.31	0.40	49.02	100.0	1 201	756
610	30		3 72	4 35	2.03	1.30	9.00	48.22	100.0	1 394	753
615	30		3 70	4.00	2.10	1 30	0.00	40.22	100.0	1 387	7/8
620	30		3.69	4.00	2.10	1.30	9.02	47.77	100.0	1 377	745
625	39	AV5	3 74	4.37	2.00	1.30	9.43	48.85	100.0	1,393	748
630	39	AV5	3 75	4.37	2.11	1.30	9 4 9	49.02	100.0	1,000	740
635	40	AV5	3 70	4.30	2.09	1.30	9.32	47.84	100.0	1,379	730
640	40	AV5	3.73	4.34	2.11	1.30	9.42	48.60	100.0	1,390	735
645	40	AV5	3.73	4.34	2.13	1.30	9.44	48.69	100.0	1,400	727
650	40	AV5	3.71	4.31	2.13	1.30	9.36	48.36	100.0	1,396	729
655	40	AV5	3.82	4.45	2.18	1.31	9.69	50.70	100.0	1,431	723
661	40	AV5	3.74	4.36	2.15	1.31	9.44	48.80	100.0	1,409	711
666	40	AV5	3.71	4.33	2.11	1.30	9.32	48.08	100.0	1,389	715
671	40	AV5	3.76	4.41	2.13	1.31	9.46	49.42	100.0	1,409	717
676	39	AV5	3.73	4.38	2.10	1.31	9.37	48.79	100.0	1,395	708
681	39	AV5	3.77	4.43	2.12	1.32	9.46	49.46	100.0	1,420	699
686	39	AV5	3.71	4.36	2.08	1.31	9.26	47.85	100.0	1,395	695
691	39	AV5	3.71	4.36	2.08	1.31	9.23	47.85	100.0	1,394	688
696	39	AV5	3.72	4.36	2.07	1.31	9.26	47.99	100.0	1,390	698
701	39	AV5	3.73	4.36	2.10	1.30	9.33	48.47	100.0	1,405	710
706	39	AV5	3.72	4.34	2.08	1.30	9.26	48.21	100.0	1,396	708
711	39	AV5	3.76	4.37	2.11	1.31	9.38	48.95	100.0	1,418	706
716	40	AV5	3.66	4.26	2.03	1.30	9.09	46.64	100.0	1,373	705
721	40	AV5	3.73	4.33	2.06	1.30	9.30	48.42	100.0	1,401	714
727	40	AV5	3.76	4.36	2.08	1.30	9.39	49.14	100.0	1,414	721
732	40	AV5	3.73	4.31	2.04	1.30	9.31	48.40	100.0	1,395	719
737	40	AV5	3.75	4.33	2.08	1.30	9.37	48.51	100.0	1,420	720
742	40	AV5	3.72	4.30	2.06	1.30	9.30	47.93	100.0	1,405	717
747	40	AV5	3.73	4.33	2.06	1.29	9.35	48.42	100.0	1,413	718

Page 4 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

OP: GRL-MGB Test Gate: 24-302014 BL# BLC TYPE CSX CSI CSB TSX STK EMX BTA RX0 RX5 end bVft ksi ksi ksi ft k-ft (%) kips 752 37 AV5 3.71 4.32 2.06 1.29 9.31 44.06 10.00 1.346 713 757 37 AV5 3.73 4.32 2.05 1.29 9.32 47.44 10.00 1.346 713 767 37 AV5 3.69 4.25 2.01 1.29 9.32 47.53 100.0 1.349 708 777 AV5 3.65 4.21 1.94 1.28 9.37 47.78 100.0 1.336 690 788 35 AV5 3.65 4.21 1.94 1.28 9.37 47.88 100.0 1.337 696 813 35 AV5 3.66 <th>I-4 DEEI</th> <th>R CROS</th> <th>SSING B</th> <th>ridge No.</th> <th>790207</th> <th>- CFCC</th> <th>EAST P</th> <th>ILE N2</th> <th></th> <th>APE D4</th> <th>6-42 HA</th> <th>MMER</th>	I-4 DEEI	R CROS	SSING B	ridge No.	790207	- CFCC	EAST P	ILE N2		APE D4	6-42 HA	MMER
BL# FIC TYPE CSN CSN TSX STK EMX BTA RX0 RX5 752 37 AV5 3.71 4.32 2.06 1.29 9.31 48.06 100.0 1.44 719 757 37 AV5 3.68 4.22 2.05 1.29 9.34 48.64 100.0 1.412 718 762 37 AV5 3.72 4.22 2.03 1.29 9.32 47.53 100.0 1.398 708 777 37 AV5 3.65 4.22 1.95 129 9.22 46.72 100.0 1.398 698 787 37 AV5 3.65 4.27 1.96 1.28 9.37 47.78 100.0 1.375 696 305 AV5 3.65 4.21 1.94 1.28 9.22 46.87 100.0 1.386 694 808 35 AV5 3.65 4.21 1.	OP: GRI	L-MGB								Test dat	e: 24-Jar	n-2014
end blft ksi ksi ksi ksi ksi ft k-ft (%) kigs kigs <td>BL#</td> <td>BLC</td> <td>TYPE</td> <td>CSX</td> <td>CSI</td> <td>CSB</td> <td>TSX</td> <td>STK</td> <td>EMX</td> <td>BTA</td> <td>RX0</td> <td>RX5</td>	BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
75737AV53.684.282.011.299.2347.44100.01.41271876237AV53.724.292.031.299.3648.45100.01.41271877237AV53.694.252.011.299.3247.53100.01.41971677237AV53.654.221.941.299.3247.53100.01.39870877737AV53.664.221.951.299.2246.72100.01.39170678737AV53.694.261.981.299.3347.88100.01.39170679835AV53.684.251.961.289.3747.93100.01.38269980335AV53.684.251.961.289.3747.88100.01.38269881335AV53.644.201.931.279.2446.88100.01.38369482335AV53.614.171.891.269.2446.21100.01.38369082835AV53.634.201.821.229.3246.92100.01.38768583335AV53.634.201.881.269.2446.24100.01.38769082835AV53.634.201.88 <td< td=""><td>752</td><td>37</td><td>AV5</td><td>3.71</td><td>4.32</td><td>2.06</td><td>1.29</td><td>9.31</td><td>48.06</td><td>100.0</td><td>1,414</td><td>719</td></td<>	752	37	AV5	3.71	4.32	2.06	1.29	9.31	48.06	100.0	1,414	719
762 37 $AV5$ 3.72 4.29 2.03 1.29 9.36 48.45 100.0 1.401 716 772 37 $AV5$ 3.69 4.25 2.01 1.29 9.32 47.53 100.0 1.401 716 772 37 $AV5$ 3.69 4.22 1.29 9.52 49.03 100.0 1.491 715 782 37 $AV5$ 3.69 4.22 1.98 1.29 9.33 47.78 100.0 1.392 793 35 $AV5$ 3.69 4.26 1.98 1.29 9.37 47.88 100.0 1.375 696 803 35 $AV5$ 3.68 4.25 1.96 1.28 9.37 47.93 100.0 1.386 694 808 35 $AV5$ 3.64 4.20 1.93 1.27 9.24 46.87 100.0 1.382 818 35 $AV5$ 3.64 4.20 1.92 1.27 9.24 46.87 100.0 1.387 818 35 $AV5$ 3.61 4.17 1.89 1.26 9.23 46.90 100.0 1.387 833 5 $AV5$ 3.63 4.20 1.82 1.26 9.24 46.12 100.0 1.387 833 5 $AV5$ 3.63 4.20 1.87 1.26 9.24 46.12 100.0 1.387 833 5 $AV5$ 3.55 4.12 $1.$	757	37	AV5	3.68	4.28	2.01	1.29	9.23	47.44	100.0	1,386	713
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	762	37	AV5	3.73	4.32	2.05	1.29	9.41	48.64	100.0	1,412	718
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	767	37	AV5	3.72	4.29	2.03	1.29	9.36	48.45	100.0	1,401	716
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	772	37	AV5	3.69	4.25	2.01	1.29	9.32	47.53	100.0	1,398	708
782 37 AV5 3.65 4.22 1.95 1.29 9.22 46.72 10.00 1.391 706 793 35 AV5 3.69 4.27 1.98 1.29 9.37 47.88 100.0 1.392 699 798 35 AV5 3.66 4.21 1.94 1.28 9.22 46.87 100.0 1.386 694 803 35 AV5 3.64 4.20 1.93 1.27 9.24 46.88 100.0 1.386 698 818 35 AV5 3.68 4.25 1.93 1.27 9.36 47.74 100.0 1.387 696 823 35 AV5 3.63 4.20 1.82 1.26 9.24 46.90 100.0 1.387 696 828 35 AV5 3.63 4.20 1.87 1.26 9.24 46.24 100.0 1.387 696 838 35 AV5 3.57 4.14 1.83 1.25 9.16 45.38 100.0 1.352 <	777	37	AV5	3.75	4.32	2.04	1.29	9.52	49.03	100.0	1,419	715
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	782	37	AV5	3.65	4.22	1.95	1.29	9.22	46.72	100.0	1,369	698
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	787	37	AV5	3.69	4.26	1.98	1.29	9.33	47.78	100.0	1,391	706
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	793	35	AV5	3.69	4.27	1.98	1.29	9.37	47.88	100.0	1,392	699
	798	35	AV5	3.65	4.21	1.94	1.28	9.22	46.87	100.0	1,375	696
80835AV53.644.201.931.279.244.6.88100.01.37469981335AV53.684.251.931.279.3447.74100.01.38269882335AV53.634.201.921.269.2346.90100.01.38369082835AV53.634.201.881.269.2446.12100.01.37568583335AV53.634.201.871.269.2846.24100.01.37369784335AV53.554.121.791.249.0945.15100.01.38169784835AV53.564.151.801.249.1345.42100.01.35270285934AV53.554.161.741.249.2645.22100.01.33470886434AV53.554.161.741.249.2645.22100.01.32770487934AV53.564.141.711.239.2045.30100.01.32770488934AV53.564.141.711.249.4046.24100.01.30770687934AV53.564.141.711.249.4046.24100.01.30470488934AV53.453.971.61 <t< td=""><td>803</td><td>35</td><td>AV5</td><td>3.68</td><td>4.25</td><td>1.96</td><td>1.28</td><td>9.37</td><td>47.93</td><td>100.0</td><td>1,388</td><td>694</td></t<>	803	35	AV5	3.68	4.25	1.96	1.28	9.37	47.93	100.0	1,388	694
81335AV53.674.231.931.279.3647.74100.01.38769682335AV53.634.201.921.269.2346.90100.01.38369082835AV53.634.201.881.269.1546.02100.01.37568583335AV53.634.201.871.269.2446.12100.01.37768984835AV53.574.141.831.259.1645.38100.01.38770784335AV53.564.151.801.249.0945.15100.01.38770784335AV53.564.151.801.249.1345.42100.01.32870285934AV53.574.181.811.249.2646.24100.01.327704864AV53.554.121.711.239.2045.30100.01.32770487434AV53.564.161.671.229.1444.69100.01.30470486934AV53.564.161.611.229.1244.29100.01.34771984434AV53.564.141.711.249.4046.24100.01.30770687934AV53.453.971.611.21<	808	35	AV5	3.64	4.20	1.93	1.27	9.24	46.88	100.0	1,374	695
81835AV53.684.251.931.279.3647./4100.01.38769082335AV53.614.171.891.269.2346.90100.01.37568583335AV53.634.201.881.269.2446.12100.01.37969984335AV53.634.201.881.269.2446.24100.01.38770784335AV53.574.141.831.259.1645.38100.01.35369784435AV53.554.121.791.249.0945.15100.01.35770285934AV53.554.161.741.249.2546.24100.01.35870886434AV53.554.161.741.249.2645.92100.01.33470886934AV53.564.141.711.229.1444.69100.01.30770087934AV53.564.141.711.249.4046.24100.01.34771988434AV53.453.961.621.229.1744.48100.01.30770690937AV53.453.961.621.229.1943.65100.01.30770690937AV53.453.961.62 <td< td=""><td>813</td><td>35</td><td>AV5</td><td>3.67</td><td>4.23</td><td>1.93</td><td>1.27</td><td>9.34</td><td>47.66</td><td>100.0</td><td>1,382</td><td>698</td></td<>	813	35	AV5	3.67	4.23	1.93	1.27	9.34	47.66	100.0	1,382	698
82335AV53.634.201.921.269.12346.00100.01.38369082835AV53.634.201.881.269.1446.12100.01.37568583335AV53.634.201.871.269.1246.02100.01.37568584335AV53.574.141.831.259.1645.38100.01.35369784835AV53.554.121.791.249.0945.15100.01.35270285934AV53.554.161.741.249.2546.24100.01.35870886434AV53.534.121.711.239.2045.30100.01.36770687934AV53.504.061.671.229.1444.69100.01.36770788434AV53.544.021.631.229.1744.48100.01.30470488934AV53.453.961.621.229.1744.48100.01.30770690937AV53.453.961.621.229.1943.63100.01.30770690937AV53.453.961.621.229.1943.63100.01.26770090437AV53.453.961.62 <t< td=""><td>818</td><td>35</td><td>AV5</td><td>3.68</td><td>4.25</td><td>1.93</td><td>1.27</td><td>9.36</td><td>47.74</td><td>100.0</td><td>1,387</td><td>696</td></t<>	818	35	AV5	3.68	4.25	1.93	1.27	9.36	47.74	100.0	1,387	696
828 35 AV5 3.61 4.17 1.88 1.26 9.15 46.02 100.0 1.375 689 833 35 AV5 3.63 4.20 1.87 1.26 9.24 46.12 100.0 1.387 707 843 35 AV5 3.57 4.14 1.83 1.26 9.28 46.24 100.0 1.387 707 848 35 AV5 3.56 4.15 1.79 1.24 9.09 45.15 100.0 1.352 702 859 34 AV5 3.57 4.18 1.81 1.24 9.26 45.92 100.0 1.358 708 869 34 AV5 3.53 4.12 1.71 1.23 9.20 45.30 100.0 1.327 704 874 34 AV5 3.56 4.14 1.71 1.24 9.40 46.24 100.0 1.304 704 879 34 AV5	823	35	AV5	3.63	4.20	1.92	1.26	9.23	46.90	100.0	1,383	690
83335AV53.634.201.881.269.2446.24100.01.37969984335AV53.574.141.831.259.1645.38100.01.35369784335AV53.554.121.791.249.0945.15100.01.35169784335AV53.564.151.801.249.1345.42100.01.35270285934AV53.574.181.811.249.2645.92100.01.35870886434AV53.554.161.741.249.2645.92100.01.33470887434AV53.504.061.671.229.1444.69100.01.30670787934AV53.564.141.711.249.4046.24100.01.30770488434AV53.474.041.651.229.1244.29100.01.30770689937AV53.453.971.611.219.0943.75100.01.30770690937AV53.453.941.591.219.2043.86100.01.27570091437AV53.403.621.511.179.1442.40100.01.28569192537AV53.333.581.46 <td< td=""><td>828</td><td>35</td><td>AV5</td><td>3.61</td><td>4.17</td><td>1.89</td><td>1.26</td><td>9.15</td><td>46.02</td><td>100.0</td><td>1,375</td><td>685</td></td<>	828	35	AV5	3.61	4.17	1.89	1.26	9.15	46.02	100.0	1,375	685
83835AV53.534.201.871.269.2840.24100.01.38770784835AV53.554.121.791.249.0945.15100.01.35369785934AV53.554.161.801.249.1345.42100.01.35270285934AV53.554.161.741.249.2546.24100.01.33470886434AV53.554.161.741.249.2645.92100.01.33470886934AV53.564.141.711.249.4046.24100.01.30670787934AV53.564.141.711.249.4046.24100.01.30770488434AV53.474.061.631.229.1244.29100.01.30770788934AV53.484.021.631.229.1744.48100.01.30770699437AV53.453.961.621.229.1943.63100.01.31770390437AV53.463.711.511.189.1242.84100.01.28569499537AV53.363.711.511.179.1042.10100.01.28569493537AV53.303.541.44 <td< td=""><td>833</td><td>35</td><td>AV5</td><td>3.63</td><td>4.20</td><td>1.88</td><td>1.26</td><td>9.24</td><td>46.12</td><td>100.0</td><td>1,379</td><td>699</td></td<>	833	35	AV5	3.63	4.20	1.88	1.26	9.24	46.12	100.0	1,379	699
84335AV53.574.141.831.259.1645.38100.01.35369784835AV53.564.121.791.249.0945.15100.01.35270285934AV53.574.181.811.249.2546.24100.01.35270286934AV53.534.121.741.249.2645.92100.01.32770486934AV53.504.061.671.229.1444.69100.01.30670787934AV53.564.141.711.249.4046.24100.01.30771888434AV53.474.041.651.229.1744.48100.01.30470489437AV53.453.971.611.219.0943.75100.01.30770690437AV53.453.941.591.219.2043.86100.01.30770690937AV53.453.941.591.219.2043.86100.01.28569191937AV53.403.861.511.189.1242.84100.01.28670091937AV53.403.861.511.179.1042.10100.01.28669394037AV53.333.581.46 <td< td=""><td>838</td><td>35</td><td>AV5</td><td>3.63</td><td>4.20</td><td>1.87</td><td>1.26</td><td>9.28</td><td>46.24</td><td>100.0</td><td>1,387</td><td>/0/</td></td<>	838	35	AV5	3.63	4.20	1.87	1.26	9.28	46.24	100.0	1,387	/0/
84835AV53.554.121.791.249.0945.15100.01.34169885335AV53.574.181.801.249.1345.42100.01.35270285934AV53.574.181.811.249.2646.24100.01.33470886934AV53.534.121.711.239.2045.92100.01.30770487434AV53.564.141.711.249.4046.24100.01.30770787934AV53.454.041.651.229.1244.29100.01.30770288934AV53.453.971.611.219.0943.75100.01.30770689937AV53.453.961.621.229.1943.63100.01.30770690937AV53.403.791.541.199.1842.84100.01.28569191437AV53.403.791.541.199.1842.84100.01.28569192537AV53.343.621.511.179.1042.10100.01.28569192537AV53.303.541.441.169.1641.59100.01.26968394037AV53.303.541.44 <td< td=""><td>843</td><td>35</td><td>AV5</td><td>3.57</td><td>4.14</td><td>1.83</td><td>1.25</td><td>9.16</td><td>45.38</td><td>100.0</td><td>1,353</td><td>697</td></td<>	843	35	AV5	3.57	4.14	1.83	1.25	9.16	45.38	100.0	1,353	697
85335AV53.564.151.801.249.134.42100.01.35270285934AV53.574.181.811.249.2546.24100.01.35870886434AV53.534.121.711.239.2045.30100.01.32770487434AV53.504.061.671.229.1444.69100.01.30670787934AV53.564.141.711.249.4046.24100.01.30770288934AV53.474.041.651.229.1244.29100.01.30470489437AV53.453.961.621.229.1943.63100.01.30770690937AV53.453.961.621.219.0943.75100.01.27570091437AV53.403.861.511.189.1242.84100.01.28670092537AV53.343.621.511.179.1042.10100.01.28569493537AV53.303.541.441.169.1641.59100.01.26368894537AV53.303.541.441.169.1641.59100.01.26368394037AV53.303.541.44	848	35	AV5	3.55	4.12	1.79	1.24	9.09	45.15	100.0	1,341	698
859 34 AV5 3.57 4.16 1.61 1.24 9.26 45.24 100.0 $1,336$ 706 864 34 AV5 3.55 4.16 1.74 1.24 9.26 45.20 100.0 $1,327$ 704 874 34 AV5 3.50 4.06 1.67 1.22 9.14 44.69 100.0 $1,306$ 707 879 34 AV5 3.56 4.14 1.71 1.24 9.40 46.24 100.0 $1,306$ 707 889 34 AV5 3.47 4.04 1.65 1.22 9.12 44.29 100.0 $1,307$ 702 889 34 AV5 3.45 3.97 1.61 1.21 9.09 43.75 100.0 $1,300$ 701 894 37 AV5 3.45 3.94 1.59 1.21 9.20 43.86 100.0 $1,307$ 706 909 37 AV5 3.45 3.94 1.59 1.21 9.20 43.86 100.0 $1,275$ 700 914 37 AV5 3.40 3.79 1.54 1.19 9.18 42.88 100.0 $1,285$ 691 925 37 AV5 3.34 3.62 1.51 1.17 9.14 42.10 100.0 $1,285$ 691 930 37 AV5 3.33 3.58 1.46 1.17 9.21 42.40 100.0 $1,269$ 693 <t< td=""><td>853</td><td>35</td><td>AVS</td><td>3.50</td><td>4.15</td><td>1.80</td><td>1.24</td><td>9.13</td><td>45.42</td><td>100.0</td><td>1,352</td><td>702</td></t<>	853	35	AVS	3.50	4.15	1.80	1.24	9.13	45.42	100.0	1,352	702
869 34 AV5 3.53 4.16 1.74 1.24 9.20 45.32 100.0 $1,334$ 706 874 34 AV5 3.50 4.06 1.67 1.22 9.20 45.30 100.0 $1,327$ 704 879 34 AV5 3.56 4.14 1.71 1.22 9.14 44.69 100.0 $1,309$ 702 889 34 AV5 3.47 4.04 1.65 1.22 9.12 44.29 100.0 $1,309$ 702 889 34 AV5 3.48 4.02 1.63 1.22 9.17 44.48 100.0 $1,300$ 701 899 37 AV5 3.45 3.97 1.61 1.21 9.09 43.75 100.0 $1,307$ 706 909 37 AV5 3.45 3.94 1.59 1.21 9.20 43.86 100.0 $1,275$ 700 914 37 AV5 3.40 3.66 1.51 1.18 9.12 42.84 100.0 $1,285$ 691 925 37 AV5 3.40 3.62 1.51 1.17 9.14 42.40 100.0 $1,286$ 700 930 37 AV5 3.34 3.62 1.51 1.17 9.21 42.40 100.0 $1,269$ 693 940 37 AV5 3.30 3.54 1.44 1.16 9.19 41.89 100.0 $1,269$ 690 <t< td=""><td>809</td><td>34</td><td>AVS</td><td>3.37</td><td>4.18</td><td>1.01</td><td>1.24</td><td>9.20</td><td>40.24</td><td>100.0</td><td>1,308</td><td>708</td></t<>	809	34	AVS	3.37	4.18	1.01	1.24	9.20	40.24	100.0	1,308	708
874 34 $AV5$ 3.53 4.12 1.71 1.23 9.20 43.30 100.0 $1,327$ 104 874 34 $AV5$ 3.50 4.06 1.67 1.22 9.14 44.69 100.0 $1,306$ 707 879 34 $AV5$ 3.47 4.04 1.65 1.22 9.12 44.29 100.0 $1,309$ 702 889 34 $AV5$ 3.48 4.02 1.63 1.22 9.17 44.48 100.0 $1,300$ 701 899 37 $AV5$ 3.45 3.97 1.61 1.21 9.09 43.75 100.0 $1,307$ 706 909 37 $AV5$ 3.45 3.94 1.59 1.21 9.20 43.86 100.0 $1,275$ 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.88 100.0 $1,275$ 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.88 100.0 $1,286$ 691 925 37 $AV5$ 3.33 3.58 1.46 1.17 9.21 42.40 100.0 $1,286$ 693 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 $1,269$ 693 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 $1,269$ <td>804 960</td> <td>34</td> <td>AVS</td> <td>3.33</td> <td>4.10</td> <td>1.74</td> <td>1.24</td> <td>9.20</td> <td>45.92</td> <td>100.0</td> <td>1,334</td> <td>708</td>	804 960	34	AVS	3.33	4.10	1.74	1.24	9.20	45.92	100.0	1,334	708
3'4 $AV5$ 3.50 4.06 1.07 1.22 9.14 44.69 100.0 $1,306$ 707 879 34 $AV5$ 3.56 4.14 1.71 1.22 9.12 44.29 100.0 $1,307$ 719 884 34 $AV5$ 3.47 4.04 1.65 1.22 9.12 44.29 100.0 $1,304$ 704 894 37 $AV5$ 3.45 3.97 1.61 1.21 9.09 43.75 100.0 $1,300$ 701 899 37 $AV5$ 3.45 3.94 1.59 1.21 9.09 43.63 100.0 $1,307$ 706 909 37 $AV5$ 3.45 3.94 1.59 1.21 9.20 43.63 100.0 $1,275$ 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.84 100.0 $1,285$ 691 925 37 $AV5$ 3.37 3.68 1.51 1.18 9.21 42.66 100.0 $1,285$ 694 935 37 $AV5$ 3.30 3.54 1.46 1.17 9.21 42.40 100.0 $1,285$ 694 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 $1,269$ 693 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 $1,269$ 693 <td>009</td> <td>34</td> <td>AVS</td> <td>3.33</td> <td>4.12</td> <td>1./1</td> <td>1.20</td> <td>9.20</td> <td>45.30</td> <td>100.0</td> <td>1,327</td> <td>704</td>	009	34	AVS	3.33	4.12	1./1	1.20	9.20	45.30	100.0	1,327	704
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	074	34	AVS	3.30	4.00	1.0/	1.22	9.14	44.09	100.0	1,300	707
34 $AV5$ 3.47 4.04 1.03 1.22 9.12 44.23 100.0 $1,304$ 704 894 37 $AV5$ 3.45 3.97 1.61 1.21 9.09 43.75 100.0 $1,300$ 701 899 37 $AV5$ 3.45 3.96 1.62 1.22 9.19 43.63 100.0 $1,307$ 706 904 37 $AV5$ 3.45 3.94 1.59 1.21 9.20 43.86 100.0 $1,275$ 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.88 100.0 $1,294$ 701 919 37 $AV5$ 3.36 3.71 1.51 1.17 9.10 42.10 100.0 $1,286$ 700 930 37 $AV5$ 3.34 3.62 1.51 1.17 9.21 42.40 100.0 $1,286$ 700 930 37 $AV5$ 3.33 3.58 1.46 1.17 9.21 42.40 100.0 $1,269$ 693 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 $1,269$ 693 945 37 $AV5$ 3.30 3.51 1.44 1.16 9.16 41.59 100.0 $1,269$ 693 940 37 $AV5$ 3.30 3.43 1.42 1.17 9.21 41.77 100.0 $1,269$ 690 <td>0/9</td> <td>24</td> <td>AV5</td> <td>2.00</td> <td>4.14</td> <td>1.71</td> <td>1.24</td> <td>9.40</td> <td>40.24</td> <td>100.0</td> <td>1,047</td> <td>719</td>	0/9	24	AV5	2.00	4.14	1.71	1.24	9.40	40.24	100.0	1,047	719
894 37 $AV5$ 3.45 4.02 1.03 1.22 9.17 44.45 100.0 $1,304$ 704 894 37 $AV5$ 3.45 3.97 1.61 1.21 9.09 43.75 100.0 $1,300$ 701 899 37 $AV5$ 3.45 3.94 1.59 1.21 9.20 43.86 100.0 $1,317$ 703 904 37 $AV5$ 3.40 3.86 1.51 1.18 9.12 42.84 100.0 $1,275$ 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.88 100.0 $1,275$ 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.88 100.0 $1,285$ 691 925 37 $AV5$ 3.36 3.71 1.51 1.17 9.21 42.56 100.0 $1,286$ 700 930 37 $AV5$ 3.33 3.58 1.46 1.17 9.21 42.40 100.0 $1,269$ 693 940 37 $AV5$ 3.30 3.51 1.44 1.16 9.16 41.59 100.0 $1,269$ 690 950 37 $AV5$ 3.30 3.49 1.42 1.17 9.21 41.77 100.0 $1,259$ 685 955 37 $AV5$ 3.30 3.43 1.43 1.17 9.21 41.53 100.0 $1,226$ <td>004 000</td> <td>24</td> <td></td> <td>2 / 9</td> <td>4.04</td> <td>1.00</td> <td>1.22</td> <td>9.12</td> <td>44.29</td> <td>100.0</td> <td>1,309</td> <td>702</td>	00 4 000	24		2 / 9	4.04	1.00	1.22	9.12	44.29	100.0	1,309	702
899 37 $AV5$ 3.45 3.96 1.61 1.21 9.09 43.63 100.0 $1,300$ 701 899 37 $AV5$ 3.45 3.94 1.59 1.21 9.20 43.63 100.0 $1,317$ 703 904 37 $AV5$ 3.40 3.86 1.51 1.18 9.12 42.84 100.0 $1,275$ 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.88 100.0 $1,285$ 691 925 37 $AV5$ 3.36 3.71 1.51 1.17 9.10 42.10 100.0 $1,285$ 691 925 37 $AV5$ 3.37 3.68 1.51 1.18 9.21 42.66 100.0 $1,285$ 694 935 37 $AV5$ 3.33 3.58 1.46 1.17 9.21 42.40 100.0 $1,269$ 693 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 $1,269$ 693 940 37 $AV5$ 3.30 3.51 1.44 1.16 9.16 41.59 100.0 $1,269$ 690 950 37 $AV5$ 3.30 3.49 1.42 1.17 9.21 41.77 100.0 $1,267$ 688 955 37 $AV5$ 3.30 3.43 1.39 1.18 9.31 42.23 100.0 $1,267$ <td>801</td> <td>27</td> <td></td> <td>2.40</td> <td>4.02 2.07</td> <td>1.00</td> <td>1.22</td> <td>9.17</td> <td>44.40</td> <td>100.0</td> <td>1,304</td> <td>704</td>	801	27		2.40	4.02 2.07	1.00	1.22	9.17	44.40	100.0	1,304	704
33° $AV5$ 3.45 3.94 1.52 1.22 3.13 $4.0.35$ 100.0 1.317 705 909 37 $AV5$ 3.40 3.86 1.51 1.18 9.12 42.84 100.0 1.275 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.84 100.0 1.275 700 914 37 $AV5$ 3.40 3.79 1.51 1.19 9.18 42.84 100.0 1.224 701 919 37 $AV5$ 3.36 3.71 1.51 1.17 9.10 42.10 100.0 1.285 691 925 37 $AV5$ 3.34 3.62 1.51 1.17 9.21 42.40 100.0 1.285 694 935 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 1.269 693 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 1.269 693 940 37 $AV5$ 3.30 3.51 1.44 1.16 9.19 41.89 100.0 1.269 693 940 37 $AV5$ 3.30 3.49 1.42 1.17 9.21 41.77 100.0 1.269 693 955 37 $AV5$ 3.30 3.43 1.41 1.18 9.25 41.53 100.0 1.259 680	800	37		3.45	3.97	1.01	1.21	9.09 0.10	43.75	100.0	1,300	701
304 37 $AV5$ 3.40 3.86 1.51 1.18 9.12 42.84 100.0 1.275 700 914 37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.84 100.0 1.294 701 919 37 $AV5$ 3.36 3.71 1.51 1.17 9.10 42.10 100.0 1.285 691 925 37 $AV5$ 3.34 3.62 1.51 1.17 9.12 42.40 100.0 1.286 700 930 37 $AV5$ 3.34 3.62 1.51 1.17 9.21 42.40 100.0 1.286 694 935 37 $AV5$ 3.33 3.58 1.46 1.17 9.21 42.40 100.0 1.269 693 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 1.269 693 940 37 $AV5$ 3.30 3.51 1.44 1.16 9.16 41.59 100.0 1.269 690 950 37 $AV5$ 3.30 3.49 1.42 1.17 9.21 41.77 100.0 1.259 685 955 37 $AV5$ 3.30 3.43 1.43 1.17 9.31 42.23 100.0 1.267 688 970 47 $AV5$ 3.30 3.43 1.41 1.18 9.31 42.17 100.0 1.287 <td>099 004</td> <td>37</td> <td></td> <td>3.45</td> <td>3.90</td> <td>1.02</td> <td>1.22</td> <td>0.00</td> <td>43.03</td> <td>100.0</td> <td>1 307</td> <td>705</td>	099 004	37		3.45	3.90	1.02	1.22	0.00	43.03	100.0	1 307	705
37 $AV5$ 3.40 3.79 1.54 1.19 9.18 42.84 100.0 1.294 701 919 37 $AV5$ 3.36 3.71 1.51 1.17 9.10 42.10 100.0 1.285 691 925 37 $AV5$ 3.36 3.71 1.51 1.17 9.10 42.10 100.0 1.285 691 925 37 $AV5$ 3.34 3.62 1.51 1.17 9.21 42.66 100.0 1.285 694 935 37 $AV5$ 3.33 3.58 1.46 1.17 9.21 42.40 100.0 1.269 693 940 37 $AV5$ 3.30 3.54 1.44 1.16 9.16 41.59 100.0 1.269 693 940 37 $AV5$ 3.30 3.51 1.44 1.16 9.16 41.59 100.0 1.269 690 950 37 $AV5$ 3.30 3.51 1.44 1.16 9.19 41.89 100.0 1.269 690 955 37 $AV5$ 3.30 3.43 1.42 1.17 9.21 41.77 100.0 1.259 680 965 37 $AV5$ 3.29 3.43 1.39 1.18 9.30 41.83 100.0 1.267 688 970 47 $AV5$ 3.30 3.43 1.41 1.18 9.31 42.17 100.0 1.287 683 <td>004 000</td> <td>37</td> <td></td> <td>3 10</td> <td>3 86</td> <td>1.55</td> <td>1.21</td> <td>0.20 0.12</td> <td>12.00</td> <td>100.0</td> <td>1 275</td> <td>700</td>	004 000	37		3 10	3 86	1.55	1.21	0.20 0.12	12.00	100.0	1 275	700
91937AV5 3.36 3.71 1.51 1.17 9.10 42.10 100.0 $1,285$ 691 92537AV5 3.37 3.68 1.51 1.18 9.21 42.56 100.0 $1,286$ 700 93037AV5 3.34 3.62 1.51 1.17 9.21 42.40 100.0 $1,285$ 694 93537AV5 3.33 3.58 1.46 1.17 9.21 42.40 100.0 $1,269$ 693 94037AV5 3.30 3.54 1.44 1.16 9.16 41.59 100.0 $1,269$ 693 94537AV5 3.30 3.54 1.44 1.16 9.19 41.89 100.0 $1,269$ 690 95037AV5 3.30 3.51 1.44 1.16 9.19 41.89 100.0 $1,269$ 690 95537AV5 3.32 3.48 1.43 1.17 9.21 41.77 100.0 $1,259$ 685 95537AV5 3.30 3.43 1.39 1.18 9.25 41.53 100.0 $1,267$ 688 96537AV5 3.30 3.43 1.41 1.18 9.31 42.17 100.0 $1,262$ 693 97547AV5 3.36 3.47 1.42 1.21 9.52 42.89 100.0 $1,288$ 705 98047AV5 $3.$	914	37		3 40	3 79	1.51	1 19	9.12	42.88	100.0	1 294	700
92537AV53.373.681.511.179.21 42.56 100.01,28670093037AV53.343.621.511.179.21 42.40 100.01,28569493537AV53.333.581.461.179.21 42.40 100.01,26969394037AV53.303.541.441.169.16 41.59 100.01,26368894537AV53.303.511.441.169.19 41.89 100.01,26969095037AV53.303.491.421.179.21 41.77 100.01,25968595537AV53.323.481.431.179.31 42.23 100.01,25968096037AV53.293.431.391.189.25 41.53 100.01,26768897047AV53.303.431.411.189.30 41.83 100.01,26269397547AV53.353.471.421.219.52 42.89 100.01,26269397547AV53.343.441.411.219.48 42.13 100.01,26269397547AV53.283.321.391.189.38 41.83 100.01,27668899147AV53.283	919	37	Δ\/5	3 36	3 71	1.54	1.13	9 10	42.00	100.0	1 285	691
93037AV53.343.621.511.179.2142.40100.01,28569493537AV53.333.581.461.179.2142.40100.01,28569394037AV53.303.541.441.169.1641.59100.01,26368894537AV53.303.511.441.169.1941.89100.01,26969095037AV53.303.511.441.169.1941.89100.01,25968595537AV53.323.481.431.179.3142.23100.01,27169096037AV53.293.431.391.189.2541.53100.01,26768897047AV53.303.431.411.189.3142.17100.01,26269397547AV53.353.471.421.219.5242.89100.01,28870598047AV53.283.321.391.189.3841.38100.01,27668899147AV53.293.331.341.189.4241.46100.01,27668899147AV53.273.331.371.189.3940.94100.01,270682100147AV53.273.331.37 <t< td=""><td>925</td><td>37</td><td>AV5</td><td>3.37</td><td>3.68</td><td>1.51</td><td>1.17</td><td>9.21</td><td>42.10</td><td>100.0</td><td>1,200</td><td>700</td></t<>	925	37	AV5	3.37	3.68	1.51	1.17	9.21	42.10	100.0	1,200	700
935 37 AV5 3.33 3.58 1.46 1.17 9.21 42.40 100.0 1,269 693 940 37 AV5 3.30 3.54 1.44 1.16 9.16 41.59 100.0 1,269 693 940 37 AV5 3.30 3.54 1.44 1.16 9.16 41.59 100.0 1,269 690 950 37 AV5 3.30 3.51 1.44 1.16 9.19 41.89 100.0 1,269 690 950 37 AV5 3.30 3.49 1.42 1.17 9.21 41.77 100.0 1,259 685 955 37 AV5 3.32 3.48 1.43 1.17 9.31 42.23 100.0 1,267 688 960 37 AV5 3.30 3.43 1.41 1.18 9.31 42.17 100.0 1,267 688 970 47 AV5 3.30 3.43 1.38 1.18 9.30 41.83 100.0 1,262 <	930	37	AV5	3.34	3.62	1.51	1.10	9.21	42.00	100.0	1 285	694
940 37 AV5 3.30 3.54 1.44 1.16 9.16 41.59 100.0 1,263 688 945 37 AV5 3.30 3.51 1.44 1.16 9.19 41.89 100.0 1,263 688 950 37 AV5 3.30 3.51 1.44 1.16 9.19 41.89 100.0 1,263 688 950 37 AV5 3.30 3.49 1.42 1.17 9.21 41.77 100.0 1,259 685 955 37 AV5 3.32 3.48 1.43 1.17 9.31 42.23 100.0 1,259 680 960 37 AV5 3.29 3.43 1.39 1.18 9.25 41.53 100.0 1,267 688 970 47 AV5 3.30 3.43 1.38 1.18 9.30 41.83 100.0 1,262 693 975 47 AV5 3.35 3.47 1.42 1.21 9.52 42.89 100.0 1,288 <	935	37	AV5	3.33	3.58	1 46	1 17	9.21	42 40	100.0	1,269	693
945 37 AV5 3.30 3.51 1.44 1.16 9.19 41.89 100.0 1,269 690 950 37 AV5 3.30 3.49 1.42 1.17 9.21 41.77 100.0 1,259 685 955 37 AV5 3.32 3.48 1.43 1.17 9.31 42.23 100.0 1,259 685 955 37 AV5 3.29 3.43 1.39 1.18 9.25 41.53 100.0 1,259 680 960 37 AV5 3.30 3.43 1.39 1.18 9.25 41.53 100.0 1,267 688 970 47 AV5 3.30 3.43 1.38 1.18 9.30 41.83 100.0 1,262 693 975 47 AV5 3.30 3.43 1.38 1.18 9.30 41.83 100.0 1,288 705 980 47 AV5 3.28 3.32 1.39 1.18 9.38 41.38 100.0 1,276 <	940	37	AV5	3 30	3 54	1 44	1 16	9 16	41 59	100.0	1,263	688
95037AV53.303.491.421.179.2141.77100.01,25968595537AV53.323.481.431.179.3142.23100.01,27169096037AV53.293.431.391.189.2541.53100.01,25968096537AV53.303.431.411.189.3142.17100.01,26768897047AV53.303.431.381.189.3041.83100.01,26269397547AV53.353.471.421.219.5242.89100.01,28870598047AV53.343.441.411.219.4842.13100.01,27668899147AV53.283.321.391.189.3841.38100.01,27668899147AV53.273.331.341.189.4241.46100.01,270682100147AV53.243.321.381.159.2840.00100.01,278674100647AV53.273.411.411.179.4240.79100.01,304683101147AV53.303.431.401.159.4841.17100.01,305686	945	37	AV5	3 30	3 51	1 44	1 16	9 1 9	41.89	100.0	1,269	690
955 37 AV5 3.32 3.48 1.43 1.17 9.31 42.23 100.0 1,271 690 960 37 AV5 3.29 3.43 1.39 1.18 9.25 41.53 100.0 1,259 680 965 37 AV5 3.30 3.43 1.41 1.18 9.31 42.17 100.0 1,267 688 970 47 AV5 3.30 3.43 1.41 1.18 9.30 41.83 100.0 1,267 688 970 47 AV5 3.30 3.43 1.38 1.18 9.30 41.83 100.0 1,262 693 975 47 AV5 3.35 3.47 1.42 1.21 9.52 42.89 100.0 1,288 705 980 47 AV5 3.34 3.44 1.41 1.21 9.48 42.13 100.0 1,276 688 991 47 AV5 3.28 3.32 1.39 1.18 9.38 41.38 100.0 1,276 <	950	37	AV5	3.30	3.49	1.42	1.17	9.21	41.77	100.0	1,259	685
96037AV53.293.431.391.189.2541.53100.01,25968096537AV53.303.431.411.189.3142.17100.01,26768897047AV53.303.431.381.189.3041.83100.01,26269397547AV53.353.471.421.219.5242.89100.01,28870598047AV53.343.441.411.219.4842.13100.01,28970098547AV53.283.321.391.189.3841.38100.01,27668899147AV53.293.331.341.189.4241.46100.01,27769199647AV53.273.331.371.189.3940.94100.01,270682100147AV53.243.321.381.159.2840.00100.01,278674100647AV53.273.411.411.179.4240.79100.01,304683101147AV53.303.431.401.159.4841.17100.01,305686	955	37	AV5	3.32	3.48	1.43	1.17	9.31	42.23	100.0	1.271	690
965 37 AV5 3.30 3.43 1.41 1.18 9.31 42.17 100.0 1,267 688 970 47 AV5 3.30 3.43 1.38 1.18 9.30 41.83 100.0 1,267 688 970 47 AV5 3.30 3.43 1.38 1.18 9.30 41.83 100.0 1,262 693 975 47 AV5 3.35 3.47 1.42 1.21 9.52 42.89 100.0 1,288 705 980 47 AV5 3.34 3.44 1.41 1.21 9.48 42.13 100.0 1,289 700 985 47 AV5 3.28 3.32 1.39 1.18 9.38 41.38 100.0 1,276 688 991 47 AV5 3.29 3.33 1.34 1.18 9.42 41.46 100.0 1,270 682 1001 47 AV5 3.27 3.33 1.37 1.18 9.39 40.94 100.0 1,270	960	37	AV5	3.29	3.43	1.39	1.18	9.25	41.53	100.0	1,259	680
97047AV53.303.431.381.189.3041.83100.01,26269397547AV53.353.471.421.219.5242.89100.01,28870598047AV53.343.441.411.219.4842.13100.01,28970098547AV53.283.321.391.189.3841.38100.01,27668899147AV53.293.331.341.189.4241.46100.01,25769199647AV53.273.331.371.189.3940.94100.01,270682100147AV53.243.321.381.159.2840.00100.01,278674100647AV53.273.411.411.179.4240.79100.01,304683101147AV53.303.431.401.159.4841.17100.01,305686	965	37	AV5	3.30	3.43	1.41	1.18	9.31	42.17	100.0	1,267	688
97547AV53.353.471.421.219.5242.89100.01,28870598047AV53.343.441.411.219.4842.13100.01,28970098547AV53.283.321.391.189.3841.38100.01,27668899147AV53.293.331.341.189.4241.46100.01,25769199647AV53.273.331.371.189.3940.94100.01,270682100147AV53.243.321.381.159.2840.00100.01,278674100647AV53.273.411.411.179.4240.79100.01,304683101147AV53.303.431.401.159.4841.17100.01,305686	970	47	AV5	3.30	3.43	1.38	1.18	9.30	41.83	100.0	1,262	693
980 47 AV5 3.34 3.44 1.41 1.21 9.48 42.13 100.0 1,289 700 985 47 AV5 3.28 3.32 1.39 1.18 9.38 41.38 100.0 1,289 700 985 47 AV5 3.28 3.32 1.39 1.18 9.38 41.38 100.0 1,276 688 991 47 AV5 3.29 3.33 1.34 1.18 9.42 41.46 100.0 1,257 691 996 47 AV5 3.27 3.33 1.37 1.18 9.39 40.94 100.0 1,270 682 1001 47 AV5 3.24 3.32 1.38 1.15 9.28 40.00 100.0 1,278 674 1006 47 AV5 3.27 3.41 1.41 1.17 9.42 40.79 100.0 1,304 683 1011 47 AV5	975	47	AV5	3.35	3.47	1.42	1.21	9.52	42.89	100.0	1,288	705
985 47 AV5 3.28 3.32 1.39 1.18 9.38 41.38 100.0 1,276 688 991 47 AV5 3.29 3.33 1.34 1.18 9.42 41.46 100.0 1,276 688 991 47 AV5 3.29 3.33 1.34 1.18 9.42 41.46 100.0 1,257 691 996 47 AV5 3.27 3.33 1.37 1.18 9.39 40.94 100.0 1,270 682 1001 47 AV5 3.24 3.32 1.38 1.15 9.28 40.00 100.0 1,278 674 1006 47 AV5 3.27 3.41 1.41 1.17 9.42 40.79 100.0 1,304 683 1011 47 AV5 3.30 3.43 1.40 1.15 9.48 41.17 100.0 1,305 686	980	47	AV5	3.34	3.44	1.41	1.21	9.48	42.13	100.0	1,289	700
99147AV53.293.331.341.189.4241.46100.01,25769199647AV53.273.331.371.189.3940.94100.01,270682100147AV53.243.321.381.159.2840.00100.01,278674100647AV53.273.411.411.179.4240.79100.01,304683101147AV53.303.431.401.159.4841.17100.01,305686	985	47	AV5	3.28	3.32	1.39	1.18	9.38	41.38	100.0	1,276	688
996 47 AV5 3.27 3.33 1.37 1.18 9.39 40.94 100.0 1,270 682 1001 47 AV5 3.24 3.32 1.38 1.15 9.28 40.00 100.0 1,278 674 1006 47 AV5 3.27 3.41 1.41 1.17 9.42 40.79 100.0 1,304 683 1011 47 AV5 3.30 3.43 1.40 1.15 9.48 41.17 100.0 1,305 686	991	47	AV5	3.29	3.33	1.34	1.18	9.42	41.46	100.0	1,257	691
1001 47 AV5 3.24 3.32 1.38 1.15 9.28 40.00 100.0 1,278 674 1006 47 AV5 3.27 3.41 1.41 1.17 9.42 40.79 100.0 1,304 683 1011 47 AV5 3.30 3.43 1.40 1.15 9.48 41.17 100.0 1,305 686	996	47	AV5	3.27	3.33	1.37	1.18	9.39	40.94	100.0	1,270	682
1006 47 AV5 3.27 3.41 1.41 1.17 9.42 40.79 100.0 1,304 683 1011 47 AV5 3.30 3.43 1.40 1.15 9.48 41.17 100.0 1,305 686	1001	47	AV5	3.24	3.32	1.38	1.15	9.28	40.00	100.0	1,278	674
1011 47 AV5 3.30 3.43 1.40 1.15 9.48 41.17 100.0 1,305 686	1006	47	AV5	3.27	3.41	1.41	1.17	9.42	40.79	100.0	1,304	683
	1011	47	AV5	3.30	3.43	1.40	1.15	9.48	41.17	100.0	1,305	686

Page 5 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEF	R CROS	SSING B	ridge No.	790207	- CFCC	EAST P	ILE N2		APE D4	6-42 HA	MMER
		TVDE	C6V	001	CSB	TOY	стк				DV5
DL#	DLC		USA kai	USI kai	USD kai	13A kai	51K #		DIA (0/)		L NO
1016	25	۸\/5	2 2 2 2	2 45	1 15	1 1 6		N-IL	100.0	1 222	675
1010	20	AVS	ა.ა∠ ე_ეე	3.43	1.40	1.10	9.52	41.07	100.0	1,322	675
1021	25	AVS	3.30	3.44	1.43	1.15	9.43	41.34	100.0	1,309	662
1026	25	AV5	3.33	3.47	1.4/	1.15	9.50	41.91	100.0	1,328	663
1031	25	AV5	3.33	3.49	1.46	1.15	9.48	41.63	100.0	1,333	663
1036	25	AV5	3.34	3.48	1.50	1.15	9.53	42.05	100.0	1,347	663
1041	36	AV5	3.35	3.42	1.46	1.14	9.55	41.86	100.0	1,330	665
1046	36	AV5	3.34	3.40	1.46	1.13	9.46	41.12	100.0	1,334	659
1051	36	AV5	3.35	3.51	1.42	1.13	9.50	41.46	100.0	1,321	664
1056	36	AV5	3.42	3.60	1.52	1.18	9.57	41.88	100.0	1,363	666
1061	36	AV5	3.47	3.63	1.56	1.19	9.54	42.32	100.0	1,387	669
1066	36	AV5	3.52	3.65	1.65	1.20	9.55	42.72	100.0	1,421	672
1071	36	AV5	3.50	3.58	1.64	1.16	9.48	42.51	100.0	1,416	668
1076	33	AV5	3.62	3.75	1.78	1.18	9.53	43.46	100.0	1,480	677
1081	33	AV5	3.71	3.86	1.92	1.20	9.56	44.44	100.0	1,537	672
1086	33	AV5	3.76	3.95	2.02	1.20	9.60	44.91	100.0	1,582	668
1091	33	AV5	3.75	3.94	2.00	1.19	9.47	44.28	100.0	1,574	656
1096	33	AV5	3.83	3.98	2.04	1.20	9.70	45.64	100.0	1,610	664
1101	33	AV5	3.81	3.92	2.03	1.19	9.59	45.30	100.0	1,602	660
1106	33	AV5	3.76	3.83	1.97	1.19	9.48	44.57	100.0	1.576	656
1111	39	AV5	3.77	3.83	2.02	1.19	9.58	44.80	100.0	1.596	658
1116	39	AV5	3.72	3.82	1.98	1.18	9.51	44.11	100.0	1.578	656
1121	39	AV5	3 71	3.82	1.97	1 16	9.51	44 59	100.0	1,563	658
1126	39	AV5	2 14	2 45	1 00	0.38	8 64	28.66	100.0	1 124	620
1131	39	AV5	3.12	3 57	1.32	0.00	9.04	42 51	100.0	1.334	503
1136	39	AV5	3.46	3.88	1 48	1 16	9 16	45.61	100.0	1 414	558
1141	30	Δ\/5	3 49	3 91	1.40	1 20	8 89	44.57	100.0	1 425	554
1146	30	Δ\/5	3 58	4 00	1.60	1.20	9.12	46 51	100.0	1 449	585
1151	35		3 58	4.00	1.02	1.27	8 97	45.31	100.0	1 1 1 1 6	578
1156	35		3.68	4.00	1 60	1.20	0.37	49.75	100.0	1 / 81	608
1161	25		2.00	4.10	1.03	1.02	0.01	46.15	100.0	1 451	501
1166	25		2.03	4.00	1.04	1.30	9.01	40.27	100.0	1,401	604
1171	35	AVS	3.75	4.21	1.73	1.30	9.40	49.41	100.0	1,301	600
1176	35	AVS	3.70	4.17	1.09	1.04	9.20	47.70	100.0	1,4/4	612
11/0	30	AVS	3.09	4.10	1.00	1.00	9.12	47.42	100.0	1,474	013
1101	35	AVD	3.77	4.30	1.73	1.38	9.45	49.44	100.0	1,490	041
1186	37	AVS	3.76	4.31	1./1	1.30	9.37	48.80	100.0	1,501	637
1191	37	AVS	3.72	4.27	1.64	1.35	9.19	47.89	100.0	1,475	634
1196	37	AV5	3.76	4.33	1.68	1.38	9.34	48.66	100.0	1,488	655
1201	37	AV5	3.75	4.33	1.68	1.40	9.31	48.25	100.0	1,480	659
1206	37	AV5	3.66	4.24	1.62	1.35	9.02	46.48	100.0	1,449	643
1211	37	AV5	3.73	4.32	1.69	1.41	9.23	47.83	100.0	1,481	664
1216	37	AV5	3.68	4.26	1.66	1.38	9.10	46.74	100.0	1,458	650
1221	37	AV5	3.66	4.24	1.62	1.36	8.97	46.19	100.0	1,434	641
1226	37	AV5	3.70	4.29	1.69	1.40	9.18	47.17	100.0	1,467	654
1231	37	AV5	3.67	4.26	1.66	1.37	9.08	46.57	100.0	1,448	641
1236	37	AV5	3.75	4.36	1.73	1.42	9.37	48.40	100.0	1,476	661
1241	37	AV5	3.66	4.27	1.67	1.36	9.09	46.44	100.0	1,444	631
1246	37	AV5	3.68	4.27	1.72	1.37	9.12	46.70	100.0	1,452	640
1251	37	AV5	3.71	4.25	1.69	1.39	9.22	47.18	100.0	1,449	644
1256	36	AV5	3.66	4.16	1.70	1.37	9.09	46.29	100.0	1,441	624
1261	36	AV5	3.61	4.08	1.64	1.34	8.95	45.27	100.0	1,417	607
1266	36	AV5	3.65	4.10	1.71	1.36	9.08	45.97	100.0	1,442	611
1271	36	AV5	3.59	4.02	1.66	1.33	8.93	44.84	100.0	1,408	591

Page 6 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

		SSING B	ridge No.	790207	- CFCC	EAST P	ILE N2		APE D4	6-42 HA	MMER
			007	001	000	TOV	OTIZ			DV0	
BL#	BLC	ITPE	USX	651	CSB	15X	SIK		BIA	RXU	HX5
ena	DI/IT		KSI	KSI	KSI	KSI	л О 1 О	K-II	(%)	KIPS	KIPS
12/6	36	AV5	3.64	4.05	1.70	1.34	9.10	45.95	100.0	1,429	598
1281	36	AV5	3.63	4.03	1.73	1.34	9.14	45.88	100.0	1,433	595
1286	36	AV5	3.62	4.00	1./2	1.34	9.09	45.76	100.0	1,420	584
1291	36	AV5	3.60	3.97	1.74	1.33	9.06	45.37	100.0	1,424	573
1296	37	AV5	3.60	3.96	1.73	1.33	9.07	45.17	100.0	1,414	567
1301	37	AV5	3.54	3.87	1.71	1.30	8.87	43.76	100.0	1,388	544
1306	37	AV5	3.58	3.91	1.71	1.31	9.00	44.60	100.0	1,392	549
1311	37	AV5	3.51	3.83	1.70	1.28	8.81	43.18	100.0	1,376	529
1316	37	AV5	3.60	3.92	1.73	1.31	9.17	45.62	100.0	1,404	544
1323	37	AV5	3.63	3.92	1.75	1.32	9.33	46.47	100.0	1,416	550
1328	37	AV5	3.58	3.86	1.72	1.29	9.14	45.30	100.0	1,393	537
1333	35	AV5	3.58	3.85	1.75	1.28	9.16	45.52	100.0	1,411	533
1338	35	AV5	3.59	3.85	1.75	1.28	9.19	45.67	100.0	1,415	531
1343	35	AV5	3.57	3.83	1.72	1.28	9.15	45.20	100.0	1,396	522
1348	35	AV5	3.56	3.82	1.72	1.26	9.13	45.22	100.0	1,392	517
1353	35	AV5	3.58	3.84	1.72	1.27	9.21	45.57	98.0	1.394	517
1358	35	AV5	3.59	3.85	1.73	1.26	9.28	46.13	96.0	1,401	513
1363	35	AV5	3.56	3.80	1.70	1.25	9.15	45.22	100.0	1.387	506
1368	36	AV5	3.52	3.77	1.69	1.23	9.05	44.17	100.0	1,383	501
1373	36	AV5	3 51	3 75	1 69	1 22	9.04	43.98	100.0	1,382	497
1378	36	AV5	3.52	3 77	1 69	1 21	9 10	44 40	100.0	1,383	501
1383	36	AV5	3.52	3 79	1.60	1 20	9 13	44 58	100.0	1,384	500
1388	36	Δ\/5	3 55	3 83	1 71	1 20	9.22	45 32	100.0	1 396	503
1393	36	Δ\/5	3 59	3.86	1 74	1 20	9.45	46.61	98.0	1 418	514
1308	36		3 50	3.87	1 73	1 10	0.40	16 12	100.0	1 / 15	510
1/03	42		3 58	3.07	1.70	1.10	0.40 0.40	46.30	100.0	1 /0/	521
1/08	42 12		3 55	3.03	1.74	1.10	0.31	40.00	100.0	1 /00	524
1/12	42		2.50	2.07	1.71	1.15	9.01	43.01	100.0	1,409	524
1410	42		2.52	2.04	1.72	1.10	9.20	44.77	100.0	1,420	524
1410	42		2.57	0.09 0.07	1.70	1.10	9.40	40.03	100.0	1,440	500
1420	42		2.55	2.07	1.75	1.00	9.09	40.01	100.0	1,401	550
1420	42	AVS	3.30	3.09	1.01	1.02	9.51	40.22	100.0	1,402	550
1400	42	AVS	3.39	3.09 2.07	1.00	0.90	9.54	40.00	100.0	1,000	009
1438	42	AVS	3.57	3.87	1.00	0.93	9.48	46.05	100.0	1,528	640
1443	54	AV5	3.57	3.85	1.91	0.88	9.47	45.98	100.0	1,554	586
1448	54	AV5	3.62	3.90	1.95	0.88	9.68	47.19	100.0	1,583	720
1453	54	AV5	3.58	3.80	1.94	0.81	9.56	46.23	100.0	1,5/3	762
1458	54	AV5	3.60	3.85	1.96	0.80	9.59	46.60	100.0	1,587	785
1463	54	AV5	3.62	3.88	2.02	0.80	9.66	47.24	100.0	1,618	801
1468	54	AV5	3.63	3.89	2.02	0.80	9.70	47.22	100.0	1,620	811
14/3	54	AV5	3.61	3.88	1.98	0.78	9.54	46.72	100.0	1,597	826
14/8	54	AV5	3.60	3.87	1.99	0.77	9.43	45.97	100.0	1,594	840
1483	54	AV5	3.64	3.91	2.00	0.80	9.56	46.89	96.0	1,600	846
1488	54	AV5	3.66	3.94	2.01	0.81	9.61	47.26	96.0	1,607	853
1493	54	AV5	3.66	3.94	2.01	0.82	9.63	47.56	96.0	1,598	850
1498	63	AV5	3.69	3.98	2.02	0.84	9.70	47.86	98.0	1,605	856
1503	63	AV5	3.70	4.02	2.02	0.84	9.75	48.13	92.0	1,606	864
1508	63	AV5	3.71	4.04	2.04	0.84	9.75	48.42	98.0	1,606	867
1513	63	AV5	3.73	4.06	2.06	0.86	9.78	48.74	92.0	1,613	868
1518	63	AV5	3.71	4.03	2.04	0.85	9.64	47.98	98.0	1,596	874
1524	63	AV5	3.73	4.04	2.05	0.87	9.66	48.31	96.0	1,595	876
1529	63	AV5	3.71	4.04	2.05	0.87	9.61	47.97	94.0	1,592	880
1534	63	AV5	3.79	4.13	2.09	0.92	9.83	49.77	94.0	1,614	877

Page 7 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEER CROSSING Bridge No. 79020 OP: GRL-MGB					- CFCC	EAST P	ILE N2		APE D4 Test dat	l6-42 HA te: 24-Jar	MMER 1-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
1539	63	AV5	3.71	4.04	2.05	0.89	9.55	47.72	92.Ó	1,584	878
1544	63	AV5	3.73	4.06	2.07	0.90	9.61	48.15	96.0	1,588	879
1549	63	AV5	3 75	4 09	2.08	0.91	9.64	48.07	89.4	1 594	876
1554	63	AV5	3 77	4 1 1	2.09	0.93	9.68	48 74	90.0	1 595	874
1559	78	AV5	3.83	4 18	2 14	0.00	9.00	50.08	89.6	1,000	879
1564	78	Δ\/5	3.81	1 16	2.14	0.00	0.01 0.70	10 30	80.0	1 600	885
1560	70		3 75	4.10	2.12	0.00	0.53	47.80	80.4	1 58/	887
1574	70		2 70	4.10	2.03	0.52	0.66	47.03	20.4 20.2	1,504	905
1570	70		0.79	4.14	2.12	0.95	9.00	40.44	09.2	1,000	090
1501	70		2.03	4.19	2.13	0.90	9.77	49.10	09.2	1,000	900
1504	70	AVS	0.04 0.04	4.20	2.14	1.00	9.77	49.52	09.4	1,090	099
1509	70	AVS	3.04 2.04	4.10	2.14	1.00	9.77	49.29	09.4	1,009	097
1594	70	AVS	3.04 2.04	4.20	2.10	1.02	9.74	49.29	09.0	1,009	090
1099	78	AVS	3.84	4.19	2.14	1.02	9.68	49.00	89.6	1,5/8	891
1604	/8	AV5	3.83	4.17	2.12	1.03	9.64	48.88	89.6	1,558	886
1609	/8	AV5	3.86	4.19	2.15	1.06	9.70	49.67	89.8	1,566	886
1614	/8	AV5	3.83	4.15	2.12	1.05	9.54	48.83	90.0	1,542	881
1619	/8	AV5	3.88	4.21	2.16	1.08	9.64	49.79	92.0	1,555	8/6
1624	/8	AV5	3.89	4.21	2.17	1.09	9.64	50.00	96.0	1,556	8/2
1629	78	AV5	3.87	4.21	2.16	1.08	9.56	48.97	100.0	1,548	875
1634	78	AV5	3.95	4.30	2.23	1.12	9.75	50.41	100.0	1,588	888
1639	90	AV5	3.97	4.32	2.23	1.13	9.78	50.79	100.0	1,585	890
1644	90	AV5	3.97	4.32	2.23	1.14	9.80	50.49	100.0	1,577	887
1649	90	AV5	3.95	4.30	2.23	1.13	9.70	50.07	100.0	1,571	884
1654	90	AV5	3.95	4.30	2.24	1.13	9.64	49.97	100.0	1,563	878
1659	90	AV5	3.96	4.31	2.25	1.13	9.65	50.58	100.0	1,557	877
1664	90	AV5	4.00	4.35	2.31	1.14	9.76	51.53	100.0	1,587	877
1669	90	AV5	3.97	4.33	2.28	1.12	9.64	50.94	100.0	1,560	874
1674	90	AV5	4.05	4.41	2.34	1.14	9.91	52.75	100.0	1,592	882
1679	90	AV5	4.01	4.38	2.31	1.12	9.75	51.82	100.0	1,572	877
1684	90	AV5	4.01	4.38	2.30	1.12	9.74	51.61	100.0	1,565	879
1689	90	AV5	4.03	4.38	2.33	1.13	9.77	51.93	100.0	1,577	882
1694	90	AV5	4.03	4.37	2.32	1.13	9.78	51.71	100.0	1,569	884
1699	90	AV5	4.05	4.39	2.33	1.13	9.87	52.31	100.0	1,574	890
1704	90	AV5	4.03	4.36	2.33	1.12	9.78	51.82	100.0	1,570	889
1709	90	AV5	4.05	4.36	2.35	1.13	9.83	52.22	100.0	1,576	892
1714	90	AV5	3.99	4.29	2.33	1.12	9.63	50.92	100.0	1,560	888
1719	90	AV5	4.04	4.33	2.34	1.13	9.78	52.19	100.0	1,569	896
1725	90	AV5	4.06	4.36	2.37	1.14	9.89	52.74	100.0	1.583	901
1730	93	AV5	4.08	4.36	2.40	1.14	9.94	52.97	100.0	1,598	909
1735	93	AV5	4.04	4.32	2.35	1.13	9.87	52.26	100.0	1.569	907
1740	93	AV5	4.02	4.28	2.35	1.12	9.79	51.63	100.0	1.568	906
1745	93	AV5	4.00	4.23	2.33	1.12	9.73	51.13	100.0	1.552	908
1750	93	AV5	4 01	4 22	2 33	1 11	9 78	51 62	100.0	1 549	911
1755	93	AV5	3.98	4 16	2.33	1 1 1	9 74	50.80	100.0	1,551	913
1760	93	AV5	4 01	4 18	2.37	1 12	9.81	51 76	100.0	1,572	917
1765	93	AV5	3 94	4.08	2.30	1 10	9.63	50.29	100.0	1 528	910
1770	00 02	AV5	3 94	4.06	2.34	1 10	9.64	50.26	100.0	1 546	914
1775	03 20	Δ\/5	3 00	4.00	2.07	1 11	9.0 - 9.86	51 66	100.0	1 5/6	922
1780	03	Δ\/5	2 Q2	4.00	2 22	1 1 1	0.00	50 16	100.0	1 522	Q15
1795	02		3 00	3 00	2.00	1 10	0.09	50.10	100.0	1 507	017
1700	02 90		3 00	3 05	2.02 2.02	1 10	9.00	10.13	100.0	1 502	01/
1705	90 00		0.90 2.00	3.90	2.20 2.22	1.10	0.04	43.00	100.0	1,503	001
1790	93	AVD	5.95	3.90	∠.აა	1.10	9.00	50.97	100.0	1,000	921

Page 8 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEE		SSING B	ridge No	790207	- CFCC	EAST P	ILE N2		APE D4	6-42 HAI	MMER
DI #		TVDE	COV	001	COD	τον	ети				
DL#		ITE	637	631	USD	137	SIN				
		A)/E	KSI	KSI	KSI	1 00		K-IL	(%)		KIPS
1800	93	AVS	3.82	3.84	2.24	1.08	9.40	48.03	100.0	1,477	909
1805	93	AV5	3.84	3.85	2.25	1.09	9.55	48.97	100.0	1,480	913
1810	93	AV5	3.86	3.88	2.29	1.08	9.70	50.14	100.0	1,506	916
1815	93	AV5	3.84	3.90	2.27	1.08	9.69	49.68	100.0	1,488	915
1820	104	AV5	3.85	3.93	2.27	1.09	9.81	50.46	100.0	1,486	916
1825	104	AV5	3.80	3.89	2.24	1.07	9.64	49.36	100.0	1,466	907
1830	104	AV5	3.80	3.90	2.25	1.08	9.68	49.61	100.0	1,471	912
1835	104	AV5	3.77	3.92	2.22	1.07	9.65	48.96	100.0	1,454	909
1840	104	AV5	3.76	3.95	2.20	1.06	9.69	48.86	100.0	1,441	909
1845	104	AV5	3.71	3.96	2.17	1.04	9.65	48.45	100.0	1,418	904
1850	104	AV5	3.72	4.01	2.18	1.05	9.74	48.85	100.0	1,420	902
1855	104	AV5	3.71	4.08	2.16	1.04	9.83	49.24	100.0	1,412	901
1860	104	AV5	3.73	4.15	2.18	1.06	9.99	50.13	100.0	1,417	901
1865	104	AV5	3.62	4.12	2.10	1.02	9.65	47.52	100.0	1.370	890
1870	104	AV5	3.61	4.18	2.11	1.02	9.72	47.67	100.0	1.376	895
1875	104	AV5	3.60	4.21	2.12	1.02	9.73	47.62	100.0	1,376	892
1880	104	AV5	3 59	4 23	2 12	1 02	9 74	47 52	100.0	1 374	891
1885	104	AV5	3.58	4 28	2 12	1 02	9.76	47.55	100.0	1,378	891
1890	104	AV5	3 54	4 23	2 1 1	1 00	9.67	46 57	100.0	1,368	883
1895	104	Δ\/5	2 73	3 10	1 80	0.76	0.07	35.85	100.0	1 2/13	865
1000	104	Δ\/5	2.70	2 78	2 17	0.70	8.86	37 52	100.0	1 / 62	925
1005	104		2.00	2.70	2.17	0.00	0.00	16 00	100.0	1,402	017
1010	104		2.50	2 70	2.09	0.07	9.27	40.00	100.0	1,570	001
1015	104	AVS	0.04	0.79	2.30	1.00	9.29	47.42	100.0	1,555	901
1915	104	AVE	3.03	3.00	2.30	1.03	9.27	40.20	100.0	1,047	000
1920	104	AVD	3.00	3.95	2.33	1.00	9.28	48.03	100.0	1,534	8/5
1926	82	AV5	3.73	4.00	2.33	1.09	9.32	49.35	100.0	1,532	8/1
1931	82	AV5	3.71	3.99	2.30	1.09	9.19	48.37	100.0	1,515	866
1936	82	AV5	3.80	4.10	2.34	1.13	9.44	50.74	100.0	1,531	867
1941	82	AV5	3.81	4.13	2.32	1.13	9.42	50.41	100.0	1,523	868
1946	82	AV5	3.82	4.15	2.31	1.14	9.42	50.42	100.0	1,518	864
1951	82	AV5	3.84	4.20	2.30	1.16	9.47	50.59	100.0	1,517	868
1956	82	AV5	3.87	4.26	2.30	1.17	9.58	51.34	100.0	1,519	864
1961	82	AV5	3.85	4.23	2.29	1.15	9.44	50.33	100.0	1,507	861
1966	82	AV5	3.93	4.32	2.32	1.18	9.74	52.21	100.0	1,529	860
1971	82	AV5	3.88	4.24	2.28	1.17	9.56	51.18	100.0	1,493	852
1976	82	AV5	3.85	4.19	2.25	1.16	9.47	50.54	100.0	1,472	846
1981	82	AV5	3.86	4.18	2.26	1.17	9.48	50.59	100.0	1,480	844
1986	82	AV5	3.84	4.10	2.23	1.16	9.40	49.82	100.0	1,461	840
1991	82	AV5	3.83	4.06	2.23	1.16	9.41	49.82	100.0	1,458	834
1996	82	AV5	3.87	4.07	2.25	1.17	9.50	50.79	100.0	1,471	831
2001	82	AV5	3.86	4.05	2.24	1.17	9.49	50.23	100.0	1,464	825
2006	76	AV5	3.89	4.06	2.26	1.18	9.56	51.02	100.0	1,475	825
2011	76	AV5	3.86	4.04	2.24	1.17	9.45	50.20	100.0	1,462	817
2016	76	AV5	3.86	4.01	2.23	1.17	9.49	50.42	100.0	1,462	815
2021	76	AV5	3.84	3.96	2.23	1.17	9.45	49.85	100.0	1,458	811
2026	76	AV5	3.88	3.98	2.24	1.18	9.57	50.95	100.0	1,464	813
2031	76	AV5	3.86	3,99	2.22	1.18	9.51	50.34	100.0	1,452	803
2036	76	AV5	3 89	4 03	2 24	1 18	9.61	50.97	100.0	1 468	794
2041	76	AV/5	3 85	3.96	2 20	1 18	9.50	50 23	100.0	1 443	792
2046	76	Δ\/5	3 82	3 93	2 20	1 17	0.00	20.20	100.0	1 444	787
2051	76	Δ\/5	3.02	3 92	2 1 8	1 17	9.00 9.40	49.01	100.0	1 420	78/
2056	76	Δ\/5	3 87	3 00	2.10	1 1 2	9.40 9.58	50 51	100.0	1 466	782
2000	10	////	0.07	0.00	L.LT	1.10	0.00	50.51	100.0	1,400	102

Page 9 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEER CROSSING Bridge No. 790207 - CFCC EAST PILE N2									APE D4 Test dat	6-42 HA	MMER 1-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	BX5
end .	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kins	kins
2061	76	۵\∕5	3 85	3 98	2 20	1 1 8	9 54	50 46	100 0	1 447	782
2066	76	Δ\/5	3 83	3 05	2.20	1.10	0.04	10 52	100.0	1 //1	772
2000	70		2.00	2.04	2.13	1.17	0.54	49.52	100.0	1,441	770
2071	70	AVS	0.04	0.94	2.19	1.17	9.54	49.09	100.0	1,440	700
2076	76	AVD	3.84	3.95	2.10	1.17	9.55	49.98	100.0	1,431	769
2081	76	AV5	3.85	3.95	2.20	1.18	9.61	50.50	100.0	1,455	772
2086	68	AV5	3.83	3.94	2.17	1.17	9.53	49.69	100.0	1,437	766
2091	68	AV5	3.80	3.90	2.14	1.16	9.45	49.07	100.0	1,422	/61
2096	68	AV5	3.79	3.88	2.11	1.16	9.41	49.00	100.0	1,407	763
2101	68	AV5	3.81	3.92	2.16	1.17	9.55	49.49	100.0	1,437	759
2106	68	AV5	3.80	3.92	2.14	1.16	9.53	49.39	100.0	1,430	757
2111	68	AV5	3.78	3.88	2.15	1.16	9.47	48.74	100.0	1,436	749
2116	68	AV5	3.78	3.88	2.14	1.16	9.49	48.49	100.0	1,434	742
2121	68	AV5	3.81	3.91	2.19	1.16	9.63	49.81	100.0	1,462	753
2127	68	AV5	3.81	3.91	2.20	1.17	9.68	49.55	100.0	1,469	744
2132	68	AV5	3.82	3.94	2.20	1.16	9.69	50.02	100.0	1,469	749
2137	68	AV5	3.78	3.91	2.17	1.15	9.53	48.91	100.0	1,456	738
2142	68	AV5	3.71	3.82	2.12	1.13	9.32	46.93	100.0	1,422	724
2147	68	AV5	3.76	3.87	2.16	1.14	9.49	48.18	100.0	1,450	726
2152	63	AV5	3.75	3.87	2.15	1.13	9.46	48.00	100.0	1,444	725
2157	63	AV5	3.73	3.86	2.15	1.13	9.42	47.69	100.0	1,442	724
2162	63	AV5	3.73	3.84	2.13	1.13	9.42	47.71	100.0	1.434	723
2167	63	AV5	3 73	3.87	2 14	1 13	9 4 4	47 96	100.0	1 434	723
2172	63	AV5	3 76	3.89	2 16	1 15	9.63	48 77	100.0	1 452	722
2177	63	AV5	3 71	3.82	2 11	1 13	9 4 4	47 23	100.0	1 427	712
2182	63	Δ\/5	3 71	3.83	2 12	1 13	9.45	47.62	100.0	1 429	716
2187	63	Δ\/5	3 73	3 83	2.12	1 1/	0.40 0.55	18 00	100.0	1 / 37	711
2107	63		3 72	3.00	2.10	1 1 /	0.50	47.62	100.0	1 / 28	700
2102	62		2 70	2 70	2.11	1 1 2	0.42	47.02	100.0	1 / 1 /	703
2197	60		2 71	2 00	2.00	1.10	9.40	47.10	100.0	1,414	709
2202	60	AVS	3.71	3.00	2.10	1.10	9.51	47.00	100.0	1,401	707
2207	60	AVS	3.70	3.00 2.77	2.09	1.10	9.49	47.29	100.0	1,420	709
2212	63	AVD	3.69	3.77	2.08	1.12	9.44	40.74	100.0	1,418	698
2217	57	AVD	3.63	3.73	2.03	1.10	9.30	40.00	100.0	1,391	694
2222	57	AVS	3.65	3.76	2.04	1.11	9.37	40.10	100.0	1,401	698
2227	57	AV5	3.68	3.77	2.07	1.12	9.45	46.95	100.0	1,415	697
2232	57	AV5	3.67	3.78	2.06	1.11	9.44	46.73	100.0	1,411	696
2237	57	AV5	3.65	3.76	2.05	1.11	9.39	46.19	100.0	1,406	693
2242	57	AV5	3.69	3.80	2.06	1.11	9.50	47.09	100.0	1,418	697
2247	57	AV5	3.67	3.80	2.06	1.10	9.46	46.62	100.0	1,418	693
2252	57	AV5	3.71	3.86	2.07	1.11	9.61	47.81	100.0	1,432	707
2257	57	AV5	3.70	3.85	2.06	1.10	9.60	47.60	100.0	1,428	708
2262	57	AV5	3.68	3.85	2.03	1.09	9.53	46.86	100.0	1,412	704
2267	57	AV5	3.66	3.82	2.02	1.09	9.46	46.33	100.0	1,406	700
2272	54	AV5	3.70	3.85	2.05	1.10	9.59	47.19	100.0	1,428	711
2277	54	AV5	3.65	3.82	2.01	1.08	9.44	45.96	100.0	1,403	698
2282	54	AV5	3.67	3.84	2.02	1.08	9.45	46.25	100.0	1,417	705
2287	54	AV5	3.68	3.86	2.03	1.08	9.50	46.48	100.0	1,423	706
2292	54	AV5	3.69	3.85	2.02	1.08	9.54	46.78	100.0	1,420	711
2297	54	AV5	3.70	3.89	2.05	1.08	9.54	46.85	100.0	1,440	706
2302	54	AV5	3.68	3.89	2.01	1.07	9.50	46.19	100.0	1,417	701
2307	54	AV5	3,73	3.94	2.04	1.08	9.65	47.11	100.0	1.443	707
2312	54	AV5	3.69	3.90	2.01	1.06	9.48	46.11	100.0	1.422	704
2317	54	AV5	3.72	3.92	2.05	1.07	9.54	46.73	100.0	1,446	708
		-	_							, –	

Page 10 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEI OP: GRI	r Cros L-MGB	SSING BI	ridge No	. 790207	- CFCC	EAST P	ILE N2		APE D4 Test dat	l6-42 HA te: 24-Ja	MMER n-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
2322	54	AV5	3.69	3.89	2.02	1.07	9.44	45.79	100.0	1,432	697
2327	47	AV5	3.73	3.93	2.04	1.07	9.56	46.74	100.0	1,442	708
2332	47	AV5	3.73	3.96	2.06	1.06	9.53	46.61	100.0	1,452	708
2337	47	AV5	3.73	3.99	2.05	1.06	9.49	46.67	100.0	1,450	709
2342	47	AV5	3.80	4.08	2.09	1.08	9.73	48.09	100.0	1,475	715
2347	47	AV5	3.75	4.01	2.07	1.06	9.49	46.47	100.0	1,465	701
2352	47	AV5	3.81	4.09	2.11	1.07	9.67	47.88	100.0	1,490	709
2357	47	AV5	3.79	4.06	2.12	1.07	9.56	46.98	100.0	1,492	702
2362	47	AV5	3.83	4.09	2.14	1.06	9.66	47.91	100.0	1,505	715
2367	47	AV5	3.76	3.99	2.10	1.05	9.39	45.88	100.0	1,482	699
2372	45	AV5	3.83	4.05	2.16	1.05	9.60	47.41	100.0	1,519	712
2377	45	AV5	3.85	4.05	2.18	1.04	9.63	47.64	100.0	1,529	715
2382	45	AV5	3.84	4.04	2.18	1.05	9.56	47.46	100.0	1,529	710
2387	45	AV5	3.82	4.00	2.16	1.03	9.50	46.89	100.0	1,522	711
2392	45	AV5	3.91	4.08	2.25	1.04	9.75	48.64	100.0	1,573	715
2397	45	AV5	3.90	4.06	2.23	1.03	9.70	48.38	100.0	1,565	719
2402	45	AV5	3.84	4.03	2.18	1.01	9.47	46.91	100.0	1,539	715
2407	45	AV5	3.85	4.04	2.20	1.00	9.47	46.84	100.0	1,555	712
2412	45	AV5	3.89	4.08	2.22	1.00	9.56	47.50	100.0	1,572	715
2417	47	AV5	3.89	4.08	2.23	0.98	9.57	47.61	100.0	1,576	728
2422	47	AV5	3.89	4.08	2.25	0.96	9.57	47.67	100.0	1,598	734
2427	47	AV5	3.91	4.11	2.27	0.93	9.61	48.31	100.0	1,611	748
2432	47	AV5	3.91	4.12	2.27	0.92	9.51	47.70	100.0	1,618	740
2437	47	AV5	3.99	4.20	2.35	0.92	9.68	49.36	100.0	1,661	755
2442	47	AV5	4.00	4.24	2.35	0.89	9.60	49.12	100.0	1,672	758
2447	47	AV5	3.99	4.22	2.34	0.90	9.50	48.32	100.0	1,660	747
2452	47	AV5	4.00	4.24	2.36	0.85	9.51	49.04	100.0	1,685	775
2457	47	AV5	4.03	4.26	2.38	0.83	9.57	49.94	100.0	1,698	789
2462	47	AV5	4.08	4.32	2.42	0.86	9.75	50.75	100.0	1,717	786
2467	78	AV5	1.76	2.05	1.48	0.31	9.16	23.24	93.4	1,253	914
2472	78	AV5	2.93	3.30	2.44	0.20	9.58	41.96	97.6	1,764	1,001
2477	78	AV5	3.35	3.70	2.62	0.30	9.76	45.44	100.0	1,837	908
2482	78	AV5	3.43	3.76	2.60	0.45	9.58	45.40	100.0	1,819	874
2487	78	AV5	3.47	3.77	2.58	0.51	9.45	45.02	100.0	1,819	858
2492	78	AV5	3.49	3.78	2.56	0.54	9.39	44.66	100.0	1,814	844
2497	78	AV5	3.49	3.76	2.54	0.55	9.33	44.36	100.0	1,804	837
2502	78	AV5	3.53	3.79	2.52	0.59	9.38	44.71	100.0	1,792	827
2507	78	AV5	3.53	3.78	2.52	0.61	9.34	44.37	100.0	1,793	817
2512	78	AV5	3.54	3.77	2.49	0.63	9.34	44.47	100.0	1,778	813
2517	/8	AV5	3.53	3.76	2.50	0.65	9.26	43.79	100.0	1,//9	807
2522	/8	AV5	3.53	3.75	2.46	0.67	9.20	43.45	100.0	1,760	/99
2527	/8	AV5	3.58	3.80	2.51	0.68	9.40	44.92	100.0	1,785	807
2532	/8	AV5	3.54	3.73	2.46	0.68	9.28	43.70	100.0	1,/58	/9/
2537	/8	AV5	3.54	3.72	2.43	0.68	9.22	43.55	100.0	1,/39	/98
2542	58	AV5	3.55	3.73	2.44	0.70	9.28	43.76	100.0	1,/41	793
2547	58	AV5	3.55	3.74	2.44	0.72	9.30	44.06	100.0	1,/34	/83
2552	58	AV5	3.59	3.//	2.43	0.74	9.49	45.06	100.0	1,/32	/90
2557	58	AV5	3.58	3./5	2.44	0.74	9.46	44./8	100.0	1,/34	/86
2562	58	AV5	3.61	3.79	2.44	0.76	9.55	45.55	100.0	1,/38	788
2567	58	AV5	3.58	3.79	2.44	0.75	9.47	44.91	100.0	1,/3/	786
25/2	58	AV5	3.62	3.91	2.45	0.78	9.63	45.85	100.0	1,/44	/8/
2580	58	AV5	3.57	3.85	2.41	0.74	9.38	44.52	100.0	1,722	788

Page 11 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

BL# BLC TYPE CSX CSI CSB TSX STK EMX BTA FX0 FX5 erd bl/ft ksi ksi <th>I-4 DEEF OP: GRI</th> <th>r Cros Mgb</th> <th>SSING Br</th> <th>idge No.</th> <th>790207</th> <th>- CFCC</th> <th>EAST P</th> <th>ILE N2</th> <th></th> <th>APE D4 Test dat</th> <th>6-42 HA</th> <th>MMER n-2014</th>	I-4 DEEF OP: GRI	r Cros Mgb	SSING Br	idge No.	790207	- CFCC	EAST P	ILE N2		APE D4 Test dat	6-42 HA	MMER n-2014
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
2585 58 AV5 359 385 2.43 0.75 9.41 4.400 1000 1.729 782 2590 58 AV5 3.58 3.82 2.42 0.76 9.34 44.49 100.0 1.724 780 2595 58 AV5 3.57 3.82 2.39 0.83 9.53 44.62 100.0 1.724 780 2600 57 AV5 3.57 3.86 2.42 0.83 9.56 47.13 100.0 1.710 791 2610 57 AV5 3.59 3.88 2.41 0.81 9.55 46.61 100.0 1.723 800 2630 57 AV5 3.59 3.88 2.38 0.81 9.45 45.99 100.0 1.699 791 2640 57 AV5 3.50 3.67 2.34 4.50.4 100.0 1.687 798 2640 57 AV5 3.50 3.69	end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
2590 58 AV5 3.58 3.82 2.42 0.76 9.34 44.49 100.0 1,724 780 2595 58 AV5 3.57 3.82 2.39 0.77 9.22 44.39 100.0 1,724 780 2600 57 AV5 3.57 3.86 2.42 0.80 9.33 44.62 100.0 1,724 792 2610 57 AV5 3.57 3.86 2.42 0.83 9.56 46.88 100.0 1,710 794 2610 57 AV5 3.57 3.86 2.41 0.80 9.55 46.81 100.0 1,710 797 2625 57 AV5 3.55 3.82 2.36 0.81 9.55 47.11 100.0 1,807 798 2645 57 AV5 3.50 3.70 2.34 0.74 9.39 45.05 100.0 1,687 798 2655 57 AV5 <td>2585</td> <td>58</td> <td>AV5</td> <td>3 59</td> <td>3 85</td> <td>2 43</td> <td>0 75</td> <td>941</td> <td>44 90</td> <td>100 0</td> <td>1 729</td> <td>782</td>	2585	58	AV5	3 59	3 85	2 43	0 75	941	44 90	100 0	1 729	782
2585 58 AV5 3.57 3.82 2.33 0.77 9.32 44.89 100.0 1,710 779 2600 57 AV5 3.57 3.82 2.37 0.80 9.31 44.62 100.0 1,710 774 2610 57 AV5 3.59 3.88 2.39 0.83 9.56 47.13 100.0 1,710 794 2610 57 AV5 3.57 3.86 2.38 0.81 9.55 46.61 100.0 1,723 800 2630 57 AV5 3.57 3.86 2.38 0.81 9.45 45.99 100.0 1,697 791 2640 57 AV5 3.53 3.70 2.34 0.74 9.39 45.05 100.0 1,687 798 2640 57 AV5 3.50 3.70 2.76 2.34 0.74 9.39 45.05 100.0 1,687 798 2665 63 <td>2590</td> <td>58</td> <td>AV5</td> <td>3 58</td> <td>3.82</td> <td>2 42</td> <td>0.76</td> <td>9.34</td> <td>44 49</td> <td>100.0</td> <td>1 724</td> <td>780</td>	2590	58	AV5	3 58	3.82	2 42	0.76	9.34	44 49	100.0	1 724	780
2600 57 AVS 3.52 3.86 2.35 0.17 0.32 +4.53 100.0 1,80 777 2600 57 AVS 3.57 3.86 2.42 0.83 9.53 46.80 100.0 1,710 777 2610 57 AVS 3.57 3.87 2.41 0.80 9.50 46.81 100.0 1,723 800 2620 57 AVS 3.57 3.86 2.38 0.81 9.55 46.61 100.0 1,723 800 2635 57 AVS 3.55 3.82 2.36 0.81 9.45 45.99 100.0 1,699 791 2645 57 AVS 3.50 3.70 2.34 0.74 9.39 45.05 100.0 1,680 787 2660 63 AVS 3.50 3.66 2.33 0.75 9.41 48.2 100.0 1,680 787 2660 63 AVS	2595	58	Δ\/5	3 57	3.82	2.72	0.70	0.07	11 30	100.0	1 710	770
2605 57 AVS 3.57 3.86 2.47 0.83 9.53 44.80 100.0 1,724 7792 2610 57 AVS 3.59 3.88 2.39 0.83 9.56 47.13 100.0 1,723 800 2620 57 AVS 3.57 3.86 2.41 0.81 9.55 47.11 100.0 1,723 800 2630 57 AVS 3.55 3.82 2.41 0.81 9.55 47.11 100.0 1,727 800 2630 57 AVS 3.51 3.74 2.33 0.76 9.40 45.31 100.0 1,868 797 2640 57 AV5 3.50 3.69 2.33 0.75 9.41 44.82 100.0 1,687 797 2650 57 AV5 3.50 3.68 2.24 0.62 9.36 44.76 100.0 1,738 802 2665 63 AV5 <td>2000</td> <td>57</td> <td></td> <td>2.57</td> <td>2 20</td> <td>2.03</td> <td>0.77</td> <td>0.21</td> <td>44.00</td> <td>100.0</td> <td>1 60/</td> <td>777</td>	2000	57		2.57	2 20	2.03	0.77	0.21	44.00	100.0	1 60/	777
2610 57 AV3 3.50 3.58 2.42 0.63 9.53 46.60 100.0 1,724 794 2610 57 AV5 3.57 3.87 2.41 0.80 9.50 46.68 100.0 1,723 800 2620 57 AV5 3.55 3.86 2.38 0.81 9.55 46.61 100.0 1,723 800 2635 57 AV5 3.55 3.82 2.36 0.81 9.45 45.99 100.0 1,699 791 2645 57 AV5 3.50 3.70 2.34 0.74 9.39 45.05 100.0 1,680 797 2665 57 AV5 3.50 3.70 2.34 0.74 9.39 45.05 100.0 1,680 797 2665 63 AV5 3.68 3.74 2.45 0.62 9.41 45.36 100.0 1,788 800 26670 63 AV5 <td>2000</td> <td>57</td> <td></td> <td>0.52</td> <td>0.00</td> <td>2.07</td> <td>0.00</td> <td>9.01</td> <td>44.02</td> <td>100.0</td> <td>1,034</td> <td>700</td>	2000	57		0.52	0.00	2.07	0.00	9.01	44.02	100.0	1,034	700
2610 37 AV3 3.58 3.68 2.39 0.63 9.50 46.16 100.0 1,710 797 2615 57 AV5 3.57 3.86 2.38 0.81 9.53 46.61 100.0 1,720 7800 2625 57 AV5 3.55 3.82 2.36 0.81 9.55 47.11 100.0 1,720 7800 2630 57 AV5 3.55 3.82 2.36 0.81 9.55 47.11 100.0 1,699 791 2640 57 AV5 3.51 3.75 2.34 0.76 9.40 45.31 100.0 1,686 797 2655 57 AV5 3.50 3.68 2.74 0.62 9.41 45.36 100.0 1,623 797 2665 63 AV5 3.68 3.74 2.43 0.62 9.36 44.76 100.0 1,738 800 2660 63 AV5 </td <td>2000</td> <td>57</td> <td>AVE</td> <td>3.37</td> <td>3.00</td> <td>2.42</td> <td>0.00</td> <td>9.55</td> <td>40.00</td> <td>100.0</td> <td>1,724</td> <td>792</td>	2000	57	AVE	3.37	3.00	2.42	0.00	9.55	40.00	100.0	1,724	792
2613 57 AV5 3.57 3.87 2.41 0.80 9.50 46.68 100.0 1,723 800 2620 57 AV5 3.59 3.88 2.38 0.81 9.55 4.61 100.0 1,727 800 2635 57 AV5 3.55 3.82 2.36 0.81 9.55 47.11 100.0 1,727 800 2635 57 AV5 3.55 3.74 2.33 0.76 9.40 45.51 100.0 1,680 787 2645 57 AV5 3.50 3.69 2.33 0.75 9.41 44.82 100.0 1,680 787 2660 63 AV5 3.68 3.74 2.45 0.62 9.41 45.36 100.0 1,783 800 2670 63 AV5 3.66 3.77 2.42 0.64 9.44 45.57 100.0 1,748 800 2681 63 AV5	2010	57	AVS	3.59	3.88	2.39	0.83	9.50	47.13	100.0	1,710	794
2620 57 AV5 3.57 3.86 2.38 0.81 9.53 40.61 100.0 1,710 797 2625 57 AV5 3.55 3.82 2.36 0.81 9.55 47.11 100.00 1,699 791 2635 57 AV5 3.51 3.75 2.36 0.77 9.44 45.04 100.0 1,697 791 2645 57 AV5 3.50 3.69 2.33 0.76 9.40 45.31 100.0 1,680 787 2650 57 AV5 3.50 3.69 2.33 0.75 9.41 44.82 100.0 1,680 787 2665 63 AV5 3.68 3.74 2.43 0.63 9.34 44.71 100.0 1,738 800 2663 63 AV5 3.68 3.77 2.42 0.64 9.44 45.57 100.0 1,748 804 2681 63 AV5 <td>2615</td> <td>57</td> <td>AV5</td> <td>3.57</td> <td>3.87</td> <td>2.41</td> <td>08.0</td> <td>9.50</td> <td>46.68</td> <td>100.0</td> <td>1,723</td> <td>800</td>	2615	57	AV5	3.57	3.87	2.41	08.0	9.50	46.68	100.0	1,723	800
2620 57 AV5 3.59 3.88 2.41 0.81 9.55 47.11 100.0 1,629 791 2630 57 AV5 3.55 3.62 2.36 0.81 9.45 45.99 100.0 1,609 791 2635 57 AV5 3.51 3.75 2.36 0.77 9.34 45.04 100.0 1,686 797 2645 57 AV5 3.50 3.70 2.34 0.74 9.39 45.05 100.0 1,687 798 2660 63 AV5 3.24 2.33 0.75 9.41 44.82 100.0 1,763 816 2660 63 AV5 3.68 3.74 2.43 0.62 9.44 45.57 100.0 1,738 800 26670 63 AV5 3.68 3.77 2.44 0.64 9.44 45.57 100.0 1,718 802 2661 63 AV5 3.64 <td>2620</td> <td>57</td> <td>AV5</td> <td>3.57</td> <td>3.86</td> <td>2.38</td> <td>0.81</td> <td>9.53</td> <td>46.61</td> <td>100.0</td> <td>1,/10</td> <td>/9/</td>	2620	57	AV5	3.57	3.86	2.38	0.81	9.53	46.61	100.0	1,/10	/9/
2630 57 AV5 3.82 2.36 0.81 9.45 49.99 100.0 1,699 /91 2635 57 AV5 3.51 3.75 2.36 0.77 9.34 45.04 100.0 1,700 791 2645 57 AV5 3.50 3.70 2.34 0.76 9.40 45.05 100.0 1,687 798 26650 57 AV5 3.50 3.69 2.33 0.75 9.41 44.82 100.0 1,687 798 26650 63 AV5 3.64 3.77 2.44 0.62 9.41 45.05 100.0 1,768 806 2675 63 AV5 3.69 3.77 2.44 0.64 9.44 45.57 100.0 1,748 802 2680 63 AV5 3.69 3.77 2.42 0.64 9.44 45.27 100.0 1,718 802 2691 63 AV5 3.64 </td <td>2625</td> <td>57</td> <td>AV5</td> <td>3.59</td> <td>3.88</td> <td>2.41</td> <td>0.81</td> <td>9.55</td> <td>47.11</td> <td>100.0</td> <td>1,727</td> <td>800</td>	2625	57	AV5	3.59	3.88	2.41	0.81	9.55	47.11	100.0	1,727	800
2635 57 AV5 2.83 3.03 1.91 0.64 6.53 36.58 83.6 1.374 633 2640 57 AV5 3.52 3.74 2.33 0.76 9.40 45.04 100.0 1.686 797 2655 57 AV5 3.50 3.70 2.34 0.74 9.39 45.05 100.0 1.686 787 2665 63 AV5 3.50 3.76 2.47 0.62 9.41 45.36 100.0 1.6380 787 2665 63 AV5 3.68 3.74 2.45 0.62 9.44 44.82 100.0 1.769 816 2670 63 AV5 3.68 3.74 2.45 0.62 9.36 44.76 100.0 1.738 800 2686 63 AV5 3.66 3.77 2.42 0.64 9.44 45.57 100.0 1.718 802 2691 63 AV5 3.61 3.70 2.38 0.61 9.26 43.55 100.0 1.714	2630	5/	AV5	3.55	3.82	2.36	0.81	9.45	45.99	100.0	1,699	/91
2640 57 AV5 3.51 3.75 2.36 0.77 9.34 45.04 100.0 1,700 791 2655 57 AV5 3.50 3.70 2.33 0.76 9.40 45.05 100.0 1,687 798 2655 57 AV5 3.50 3.69 2.33 0.75 9.41 44.82 100.0 1,680 787 2660 63 AV5 3.70 3.76 2.47 0.62 9.41 45.36 100.0 1,738 800 26675 63 AV5 3.68 3.74 2.43 0.63 9.36 44.71 100.0 1,738 800 2680 63 AV5 3.69 3.77 2.42 0.64 9.44 45.27 100.0 1,748 804 2681 63 AV5 3.64 3.71 2.39 0.61 9.26 43.55 100.0 1,715 793 2706 63 AV5 3.64 3.71 2.38 0.61 9.24 44.18 100.0 1,701 <td>2635</td> <td>57</td> <td>AV5</td> <td>2.83</td> <td>3.03</td> <td>1.91</td> <td>0.64</td> <td>6.53</td> <td>36.58</td> <td>83.6</td> <td>1,3/4</td> <td>635</td>	2635	57	AV5	2.83	3.03	1.91	0.64	6.53	36.58	83.6	1,3/4	635
2645 57 AV5 3.52 3.74 2.33 0.76 9.40 45.31 100.0 1.686 797 2655 57 AV5 3.50 3.70 2.33 0.75 9.41 44.82 100.0 1.687 798 2665 63 AV5 3.24 3.35 2.25 0.53 9.18 39.09 100.0 1.623 797 2665 63 AV5 3.68 3.74 2.45 0.62 9.41 45.36 100.0 1.753 806 2670 63 AV5 3.68 3.74 2.42 0.64 9.44 45.57 100.0 1.738 800 2680 63 AV5 3.64 3.71 2.38 0.62 9.18 43.86 100.0 1.715 799 2691 63 AV5 3.64 3.71 2.39 0.64 9.28 44.18 100.0 1.715 799 2701 63 AV5 3.61 3.71 2.38 0.59 9.34 43.95 100.0 1.704	2640	57	AV5	3.51	3.75	2.36	0.77	9.34	45.04	100.0	1,700	791
2650 57 AVS 3.50 3.70 2.34 0.74 9.39 45.05 100.0 1.680 787 2655 57 AVS 3.24 3.35 2.25 0.53 9.41 44.82 100.0 1.680 787 2660 63 AVS 3.24 3.35 2.25 0.53 9.41 45.36 100.0 1.683 797 2665 63 AVS 3.68 3.74 2.44 0.62 9.36 44.76 100.0 1.783 800 2681 63 AVS 3.69 3.77 2.44 0.64 9.44 45.57 100.0 1.748 804 2681 63 AVS 3.64 3.71 2.38 0.64 9.44 45.57 100.0 1.715 799 2696 63 AVS 3.64 3.71 2.38 0.51 9.40 44.36 100.0 1.714 795 2706 63 AVS <td>2645</td> <td>57</td> <td>AV5</td> <td>3.52</td> <td>3.74</td> <td>2.33</td> <td>0.76</td> <td>9.40</td> <td>45.31</td> <td>100.0</td> <td>1,686</td> <td>797</td>	2645	57	AV5	3.52	3.74	2.33	0.76	9.40	45.31	100.0	1,686	797
2655 57 AV5 3.50 3.69 2.33 0.75 9.41 44.82 100.0 1,680 787 2666 63 AV5 3.70 3.76 2.47 0.62 9.41 45.36 100.0 1,769 816 2665 63 AV5 3.68 3.74 2.43 0.62 9.44 45.37 100.0 1,738 800 2680 63 AV5 3.68 3.74 2.43 0.64 9.44 45.23 100.0 1,738 800 2680 63 AV5 3.69 3.77 2.42 0.64 9.44 45.23 100.0 1,718 799 2696 63 AV5 3.64 3.70 2.38 0.61 9.26 43.55 100.0 1,714 795 2701 63 AV5 3.61 3.70 2.38 0.61 9.26 43.55 100.0 1,714 795 2716 63 AV5 3.60 3.73 2.38 0.58 9.34 43.95 100.0 1,704	2650	57	AV5	3.50	3.70	2.34	0.74	9.39	45.05	100.0	1,687	798
2660 63 AV5 3.24 3.35 2.25 0.53 9.18 39.09 100.0 1.623 797 2665 63 AV5 3.68 3.74 2.45 0.62 9.36 44.76 100.0 1,753 806 2675 63 AV5 3.68 3.74 2.43 0.63 9.34 44.71 100.0 1,738 800 2685 63 AV5 3.63 3.70 2.42 0.64 9.44 45.27 100.0 1,738 802 2691 63 AV5 3.63 3.70 2.38 0.62 9.18 43.86 100.0 1,715 799 2696 63 AV5 3.64 3.71 2.38 0.61 9.40 44.35 100.0 1,714 795 2716 63 AV5 3.64 3.72 2.38 0.58 9.34 43.91 100.0 1,704 794 2711 63 AV5 <td>2655</td> <td>57</td> <td>AV5</td> <td>3.50</td> <td>3.69</td> <td>2.33</td> <td>0.75</td> <td>9.41</td> <td>44.82</td> <td>100.0</td> <td>1,680</td> <td>787</td>	2655	57	AV5	3.50	3.69	2.33	0.75	9.41	44.82	100.0	1,680	787
2665 63 AV5 3.70 3.76 2.47 0.62 9.41 45.36 100.0 1,769 816 2675 63 AV5 3.68 3.74 2.45 0.62 9.36 44.76 100.0 1,753 806 2680 63 AV5 3.68 3.77 2.42 0.64 9.44 45.57 100.0 1,738 800 2691 63 AV5 3.63 3.70 2.38 0.64 9.44 45.27 100.0 1,718 793 2706 63 AV5 3.64 3.71 2.39 0.61 9.40 44.36 100.0 1,717 793 2706 63 AV5 3.64 3.71 2.38 0.59 9.34 43.91 100.0 1,704 794 2711 63 AV5 3.60 3.72 2.38 0.58 9.34 43.91 100.0 1,704 794 2721 64 AV5 <td>2660</td> <td>63</td> <td>AV5</td> <td>3.24</td> <td>3.35</td> <td>2.25</td> <td>0.53</td> <td>9.18</td> <td>39.09</td> <td>100.0</td> <td>1,623</td> <td>797</td>	2660	63	AV5	3.24	3.35	2.25	0.53	9.18	39.09	100.0	1,623	797
2670 63 AV5 3.68 3.74 2.43 0.63 9.36 44.71 100.0 1,753 806 2675 63 AV5 3.68 3.74 2.43 0.63 9.34 44.71 100.0 1,748 800 2680 63 AV5 3.69 3.77 2.42 0.64 9.44 45.23 100.0 1,748 802 2691 63 AV5 3.63 3.70 2.38 0.61 9.28 44.18 100.0 1,715 793 2701 63 AV5 3.61 3.70 2.38 0.61 9.26 43.55 100.0 1,714 795 2706 63 AV5 3.61 3.71 2.38 0.59 9.34 43.91 100.0 1,701 793 2716 64 AV5 3.60 3.72 2.38 0.58 9.32 43.67 100.0 1,694 795 2731 64 AV5 3.60 3.72 2.35 0.58 9.32 43.67 100.0 1,693	2665	63	AV5	3.70	3.76	2.47	0.62	9.41	45.36	100.0	1,769	816
2675 63 AV5 3.68 3.74 2.43 0.63 9.34 44.71 100.0 1,738 800 2680 63 AV5 3.70 3.77 2.44 0.64 9.44 45.23 100.0 1,738 802 2691 63 AV5 3.63 3.70 2.38 0.62 9.18 43.86 100.0 1,715 799 2696 63 AV5 3.64 3.70 2.38 0.61 9.26 43.55 100.0 1,717 793 2706 63 AV5 3.64 3.72 2.38 0.61 9.40 44.36 100.0 1,704 794 2711 63 AV5 3.60 3.72 2.38 0.58 9.34 43.91 100.0 1,704 794 2721 64 AV5 3.60 3.72 2.35 0.58 9.32 43.67 100.0 1,691 995 2731 64 AV5 <td>2670</td> <td>63</td> <td>AV5</td> <td>3.68</td> <td>3.74</td> <td>2.45</td> <td>0.62</td> <td>9.36</td> <td>44.76</td> <td>100.0</td> <td>1,753</td> <td>806</td>	2670	63	AV5	3.68	3.74	2.45	0.62	9.36	44.76	100.0	1,753	806
2680 63 AV5 3.70 3.77 2.44 0.64 9.44 45.57 100.0 1,748 804 2685 63 AV5 3.69 3.77 2.42 0.64 9.44 45.23 100.0 1,738 802 2696 63 AV5 3.64 3.71 2.39 0.61 9.28 44.18 100.0 1,715 793 2701 63 AV5 3.64 3.72 2.39 0.61 9.26 43.55 100.0 1,719 799 2716 63 AV5 3.60 3.72 2.39 0.51 9.44 43.95 100.0 1,704 794 2721 64 AV5 3.60 3.72 2.35 0.58 9.32 43.70 100.0 1,691 795 2736 64 AV5 3.56 3.70 2.36 0.59 9.32 43.67 100.0 1,688 801 2746 64 AV5 <td>2675</td> <td>63</td> <td>AV5</td> <td>3.68</td> <td>3.74</td> <td>2.43</td> <td>0.63</td> <td>9.34</td> <td>44.71</td> <td>100.0</td> <td>1,738</td> <td>800</td>	2675	63	AV5	3.68	3.74	2.43	0.63	9.34	44.71	100.0	1,738	800
2685 63 AV5 3.69 3.77 2.42 0.64 9.44 45.23 100.0 1,738 802 2691 63 AV5 3.63 3.70 2.38 0.62 9.18 43.86 100.0 1,715 799 2696 63 AV5 3.64 3.71 2.38 0.61 9.26 43.55 100.0 1,714 795 2706 63 AV5 3.64 3.72 2.39 0.61 9.40 44.36 100.0 1,709 797 2716 63 AV5 3.60 3.73 2.38 0.58 9.34 43.91 100.0 1,701 793 2726 64 AV5 3.60 3.72 2.35 0.58 9.32 43.67 100.0 1,691 795 2736 64 AV5 3.55 3.69 2.34 0.60 9.39 43.88 100.0 1,684 799 2746 64 AV5 <td>2680</td> <td>63</td> <td>AV5</td> <td>3.70</td> <td>3.77</td> <td>2.44</td> <td>0.64</td> <td>9.44</td> <td>45.57</td> <td>100.0</td> <td>1,748</td> <td>804</td>	2680	63	AV5	3.70	3.77	2.44	0.64	9.44	45.57	100.0	1,748	804
2691 63 AV5 3.63 3.70 2.38 0.62 9.18 43.86 100.0 1,715 799 2696 63 AV5 3.64 3.71 2.39 0.64 9.28 44.18 100.0 1,715 793 2701 63 AV5 3.61 3.70 2.38 0.61 9.40 44.36 100.0 1,719 799 2711 63 AV5 3.61 3.71 2.38 0.59 9.34 43.91 100.0 1,709 797 2716 63 AV5 3.60 3.72 2.38 0.58 9.34 43.95 100.0 1,701 793 2726 64 AV5 3.60 3.72 2.35 0.58 9.32 43.67 100.0 1,691 795 2731 64 AV5 3.56 3.70 2.36 0.59 9.32 43.67 100.0 1,688 801 2746 64 AV5 <td>2685</td> <td>63</td> <td>AV5</td> <td>3.69</td> <td>3.77</td> <td>2.42</td> <td>0.64</td> <td>9.44</td> <td>45.23</td> <td>100.0</td> <td>1,738</td> <td>802</td>	2685	63	AV5	3.69	3.77	2.42	0.64	9.44	45.23	100.0	1,738	802
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2691	63	AV5	3.63	3.70	2.38	0.62	9.18	43.86	100.0	1,715	799
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2696	63	AV5	3.64	3.71	2.39	0.64	9.28	44.18	100.0	1,715	793
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2701	63	AV5	3.61	3.70	2.38	0.61	9.26	43.55	100.0	1,714	795
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2706	63	AV5	3.64	3.72	2.39	0.61	9.40	44.36	100.0	1,719	799
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2711	63	AV5	3.61	3 71	2.38	0.59	9.34	43.91	100.0	1 709	797
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2716	63	AV5	3.60	3 73	2.38	0.58	9.34	43.95	100.0	1 704	794
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2721	64	AV5	3.62	3 74	2.37	0.59	9.41	44 12	100.0	1 701	793
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2726	64	AV5	3.60	3.72	2.35	0.58	9.32	43 70	100.0	1 691	795
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2731	64	Δ\/5	3 58	3 70	2.00	0.50	0.02	43.70	100.0	1 69/	705
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2736	64	Δ\/5	3 57	3.68	2.00	0.00	0.02	13.88	100.0	1 603	801
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27/1	64	Δ\/5	3 55	3 69	2.00	0.00	0.00 0.37	13 52	100.0	1,688	700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2746	64		3 56	3 70	2.04	0.00	0.12	13 82	100.0	1,000	802
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2740	64		2.50	2 70	2.04	0.00	9.42	40.02	100.0	1,007	002
273664AVS3.543.692.330.389.3843.73100.01,679813276164AVS3.553.702.320.589.4343.87100.01,680822276664AVS3.533.672.310.589.3843.27100.01,671817277164AVS3.543.692.330.589.4443.93100.01,675825277664AVS3.523.682.320.579.3843.17100.01,670828278164AVS3.503.652.290.599.2942.82100.01,653826278662AVS3.523.692.290.609.4043.52100.01,650828279162AVS3.513.682.270.629.3843.21100.01,634828280262AVS3.513.692.240.639.2942.69100.01,632832280762AVS3.513.742.270.639.4543.54100.01,634851281762AVS3.513.742.270.639.4543.54100.01,634851281762AVS3.513.722.280.619.3743.21100.01,633862282762AVS3.513.72	2756	64		2.50	2.70	2.00	0.59	0.40	40.00	100.0	1,004	010
276164AV53.533.702.320.569.4343.87100.01,680622276664AV53.533.672.310.589.3843.27100.01,671817277164AV53.543.692.330.589.4443.93100.01,675825277664AV53.523.682.320.579.3843.17100.01,670828278164AV53.503.652.290.599.2942.82100.01,653826278662AV53.523.692.290.609.4043.52100.01,650828279162AV53.483.642.260.609.2742.49100.01,629824279662AV53.513.682.270.629.3843.21100.01,634828280262AV53.503.732.260.629.3643.09100.01,632832280762AV53.513.742.270.639.4543.54100.01,634851281762AV53.513.722.280.619.3743.21100.01,633862282762AV53.513.722.280.619.3943.08100.01,636878282762AV53.533.74	2750	64		2.54	2 70	2.00	0.50	9.00	40.70	100.0	1,079	010
276064AVS3.533.672.310.569.3643.27100.01,671817277164AVS3.543.692.330.589.4443.93100.01,675825277664AVS3.523.682.320.579.3843.17100.01,670828278164AVS3.503.652.290.599.2942.82100.01,653826278662AVS3.523.692.290.609.4043.52100.01,650828279162AVS3.513.682.270.629.3843.21100.01,629824279662AVS3.513.682.270.629.3843.21100.01,634828280262AVS3.503.732.260.629.3643.09100.01,632832280762AVS3.513.742.270.639.4543.54100.01,634851281762AVS3.513.722.280.619.3743.21100.01,636878282762AV53.513.722.280.619.3943.08100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.69	2701	64	AV5	3.55	3.70	2.32	0.50	9.40	40.07	100.0	1,000	022
277164AV53.543.692.350.569.4443.93100.01,675625277664AV53.523.682.320.579.3843.17100.01,670828278164AV53.503.652.290.599.2942.82100.01,653826278662AV53.523.692.290.609.4043.52100.01,650828279162AV53.483.642.260.609.2742.49100.01,629824279662AV53.513.682.270.629.3843.21100.01,634828280262AV53.503.732.260.629.3643.09100.01,632832280762AV53.503.732.260.629.3643.09100.01,634851281762AV53.513.742.270.639.4543.54100.01,633862282262AV53.513.722.280.619.3743.21100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.72	2700	64	AVE	3.55	3.07	2.01	0.50	9.30	43.27	100.0	1,071	017
277664AV53.523.682.320.579.3843.17100.01,670828278164AV53.503.652.290.599.2942.82100.01,653826278662AV53.523.692.290.609.4043.52100.01,650828279162AV53.483.642.260.609.2742.49100.01,629824279662AV53.513.682.270.629.3843.21100.01,634828280262AV53.503.732.260.629.3643.09100.01,623832280762AV53.503.732.260.629.3643.09100.01,634851281762AV53.503.732.280.619.3743.21100.01,633862282262AV53.503.732.280.619.3743.21100.01,633862282262AV53.513.722.280.619.3943.08100.01,636878283262AV53.533.742.300.609.5244.06100.01,646893283262AV53.533.722.330.599.6344.43100.01,655931284262AV53.523.71	2771	04	AVE	3.34	3.09	2.33	0.50	9.44	43.93	100.0	1,070	020
278164AV53.503.652.290.599.2942.82100.01,653826278662AV53.523.692.290.609.4043.52100.01,650828279162AV53.483.642.260.609.2742.49100.01,629824279662AV53.513.682.270.629.3843.21100.01,634828280262AV53.493.692.240.639.2942.69100.01,623832280762AV53.503.732.260.629.3643.09100.01,632848281262AV53.513.742.270.639.4543.54100.01,634851281762AV53.503.732.280.619.3743.21100.01,633862282262AV53.513.722.280.619.3743.21100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,648948284262AV53.523.71	2770	04	AVD	3.52	3.00	2.32	0.57	9.38	43.17	100.0	1,070	828
278662AV53.523.692.290.609.4043.52100.01,650828279162AV53.483.642.260.609.2742.49100.01,629824279662AV53.513.682.270.629.3843.21100.01,634828280262AV53.493.692.240.639.2942.69100.01,623832280762AV53.503.732.260.629.3643.09100.01,632848281262AV53.513.742.270.639.4543.54100.01,634851281762AV53.503.732.280.619.3743.21100.01,633862282262AV53.513.722.280.619.3943.08100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,648948284262AV53.523.712.330.599.6344.26100.01,648948	2/81	64	AV5	3.50	3.65	2.29	0.59	9.29	42.82	100.0	1,653	826
279162AV53.483.642.260.609.2742.49100.01,629824279662AV53.513.682.270.629.3843.21100.01,634828280262AV53.493.692.240.639.2942.69100.01,623832280762AV53.503.732.260.629.3643.09100.01,632848281262AV53.513.742.270.639.4543.54100.01,634851281762AV53.503.732.280.619.3743.21100.01,633862282262AV53.513.722.280.619.3943.08100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,648948284262AV53.523.712.330.599.6344.26100.01,648948	2/86	62	AV5	3.52	3.69	2.29	0.60	9.40	43.52	100.0	1,650	828
279662AV53.513.682.270.629.3843.21100.01,634828280262AV53.493.692.240.639.2942.69100.01,623832280762AV53.503.732.260.629.3643.09100.01,632848281262AV53.513.742.270.639.4543.54100.01,634851281762AV53.503.732.280.619.3743.21100.01,633862282262AV53.513.722.280.619.3943.08100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,648948284262AV53.523.712.330.599.6344.26100.01,648948	2/91	62	AV5	3.48	3.64	2.26	0.60	9.27	42.49	100.0	1,629	824
280262AV53.493.692.240.639.2942.69100.01,623832280762AV53.503.732.260.629.3643.09100.01,632848281262AV53.513.742.270.639.4543.54100.01,634851281762AV53.503.732.280.619.3743.21100.01,633862282262AV53.513.722.280.619.3943.08100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,648948284262AV53.523.712.330.599.6344.26100.01,648948	2796	62	AV5	3.51	3.68	2.27	0.62	9.38	43.21	100.0	1,634	828
2807 62 AV5 3.50 3.73 2.26 0.62 9.36 43.09 100.0 1,632 848 2812 62 AV5 3.51 3.74 2.27 0.63 9.45 43.54 100.0 1,634 851 2817 62 AV5 3.50 3.73 2.28 0.61 9.37 43.21 100.0 1,633 862 2822 62 AV5 3.51 3.72 2.28 0.61 9.39 43.08 100.0 1,636 878 2827 62 AV5 3.53 3.74 2.30 0.60 9.52 44.06 100.0 1,646 893 2832 62 AV5 3.50 3.69 2.30 0.59 9.49 43.44 100.0 1,639 905 2837 62 AV5 3.53 3.72 2.33 0.59 9.63 44.43 100.0 1,655 931 2842 62 AV5 3.52 3.71 2.33 0.59 9.63 44.26 100.0 1,648	2802	62	AV5	3.49	3.69	2.24	0.63	9.29	42.69	100.0	1,623	832
2812 62 AV5 3.51 3.74 2.27 0.63 9.45 43.54 100.0 1,634 851 2817 62 AV5 3.50 3.73 2.28 0.61 9.37 43.21 100.0 1,633 862 2822 62 AV5 3.51 3.72 2.28 0.61 9.39 43.08 100.0 1,636 878 2827 62 AV5 3.53 3.74 2.30 0.60 9.52 44.06 100.0 1,646 893 2832 62 AV5 3.50 3.69 2.30 0.59 9.49 43.44 100.0 1,639 905 2837 62 AV5 3.53 3.72 2.33 0.59 9.63 44.43 100.0 1,655 931 2842 62 AV5 3.52 3.71 2.33 0.59 9.63 44.26 100.0 1,648 948	2807	62	AV5	3.50	3.73	2.26	0.62	9.36	43.09	100.0	1,632	848
281762AV53.503.732.280.619.3743.21100.01,633862282262AV53.513.722.280.619.3943.08100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,655931284262AV53.523.712.330.599.6344.26100.01,648948	2812	62	AV5	3.51	3.74	2.27	0.63	9.45	43.54	100.0	1,634	851
282262AV53.513.722.280.619.3943.08100.01,636878282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,655931284262AV53.523.712.330.599.6344.26100.01,648948	2817	62	AV5	3.50	3.73	2.28	0.61	9.37	43.21	100.0	1,633	862
282762AV53.533.742.300.609.5244.06100.01,646893283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,655931284262AV53.523.712.330.599.6344.26100.01,648948	2822	62	AV5	3.51	3.72	2.28	0.61	9.39	43.08	100.0	1,636	878
283262AV53.503.692.300.599.4943.44100.01,639905283762AV53.533.722.330.599.6344.43100.01,655931284262AV53.523.712.330.599.6344.26100.01,648948	2827	62	AV5	3.53	3.74	2.30	0.60	9.52	44.06	100.0	1,646	893
283762AV53.533.722.330.599.6344.43100.01,655931284262AV53.523.712.330.599.6344.26100.01,648948	2832	62	AV5	3.50	3.69	2.30	0.59	9.49	43.44	100.0	1,639	905
2842 62 AV5 3.52 3.71 2.33 0.59 9.63 44.26 100.0 1,648 948	2837	62	AV5	3.53	3.72	2.33	0.59	9.63	44.43	100.0	1,655	931
	2842	62	AV5	3.52	3.71	2.33	0.59	9.63	44.26	100.0	1,648	948

Page 12 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEF		SSING B	ridge No.	. 790207	- CFCC	EAST F	PILE N2		APE D4	6-42 HA	MMER
							0714	= /	Test dat	e: 24-Ja	n-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
2847	67	AV5	3.54	3.72	2.35	0.61	9.67	44.64	100.0	1,649	977
2852	67	AV5	3.52	3.70	2.36	0.60	9.56	44.03	100.0	1,646	1,006
2857	67	AV5	3.56	3.75	2.38	0.61	9.73	45.18	100.0	1,656	1,036
2862	67	AV5	3.55	3.73	2.39	0.61	9.73	45.11	100.0	1,656	1,052
2867	67	AV5	3.54	3.73	2.40	0.61	9.71	44.85	100.0	1,657	1,051
2872	67	AV5	3.55	3.74	2.42	0.59	9.72	45.13	100.0	1,668	1,052
2877	67	AV5	3.54	3.73	2.43	0.58	9.70	44.87	100.0	1,675	1,048
2882	67	AV5	3.51	3.70	2.45	0.54	9.55	44.10	100.0	1,680	1,036
2887	67	AV5	3.55	3.74	2.49	0.54	9.74	45.29	100.0	1,706	1,036
2892	67	AV5	3.53	3.70	2.50	0.51	9.64	44.76	100.0	1,715	1,027
2897	67	AV5	3.56	3.72	2.52	0.50	9.75	44.99	100.0	1.725	1.019
2902	67	AV5	3.56	3.71	2.52	0.48	9.75	45.04	100.0	1.734	1.015
2907	67	AV5	3 58	3 74	2 53	0.48	9.85	45 58	100.0	1 740	1 015
2913	67	AV5	3 56	3 71	2.53	0.45	9 77	45.09	100.0	1 738	1 012
2918	67	AV5	3.58	3 74	2.54	0.45	9 77	45 49	100.0	1 749	1 019
2923	67	AV5	3 58	3 74	2 53	0.10	9.79	45.32	100.0	1 740	1 015
2928	67	Δ\/5	3 57	3 72	2.50	0.47	9.76	45.02	100.0	1 739	1,016
2023	67	Δ\/5	3 63	3 77	2.52	0.47	10.03	16.81	100.0	1 761	1 030
2038	67		3.60	3 73	2.55	0.43	0.00	45.01	100.0	1 752	1,000
2012	67		2.61	2 75	2.54	0.47	0.90	45.70	100.0	1 761	1 020
2940	67		2.01	2.75	2.55	0.47	9.09	45.79	100.0	1,701	1,000
2940	67	AVS	0.01	0.75	2.55	0.40	9.00	45.94	100.0	1,700	1,043
2900	67	AVS	3.01	3.75	2.33	0.40	9.02	45.05	100.0	1,709	1,040
2958	67	AVS	3.59	3.73	2.55	0.47	9.78	45.14	100.0	1,755	1,052
2963	67	AV5	3.60	3.74	2.56	0.46	9.77	45.35	100.0	1,758	1,064
2968	67	AV5	3.15	3.26	2.38	0.36	8.81	35.29	97.8	1,634	1,026
2973	67	AV5	3.82	3.93	2.82	0.46	9.89	48.74	100.0	1,908	1,132
2978	67	AV5	3.80	3.93	2.77	0.49	9.71	47.45	100.0	1,8//	1,118
2983	/3	AV5	3.83	3.96	2.77	0.52	9.81	48.04	100.0	1,881	1,132
2988	/3	AV5	3.81	3.96	2.73	0.54	9.79	47.55	100.0	1,860	1,130
2993	/3	AV5	3.81	3.97	2./1	0.55	9.78	47.60	100.0	1,843	1,135
2998	/3	AV5	3.79	3.95	2.68	0.56	9.71	46.95	100.0	1,821	1,134
3003	/3	AV5	3.85	4.02	2.69	0.61	9.93	48.21	100.0	1,826	1,144
3008	73	AV5	3.83	4.02	2.66	0.62	9.87	47.59	100.0	1,807	1,147
3013	73	AV5	3.75	3.94	2.60	0.61	9.57	45.71	100.0	1,761	1,140
3018	73	AV5	3.85	4.05	2.64	0.67	9.91	48.01	100.0	1,790	1,163
3024	73	AV5	3.88	4.08	2.65	0.69	10.03	48.92	100.0	1,792	1,173
3029	73	AV5	3.81	4.00	2.59	0.67	9.82	47.32	100.0	1,755	1,180
3034	73	AV5	3.80	4.01	2.58	0.69	9.73	46.86	100.0	1,742	1,193
3039	73	AV5	3.85	4.08	2.60	0.73	9.93	48.08	100.0	1,751	1,216
3044	73	AV5	3.83	4.02	2.58	0.73	9.84	47.58	100.0	1,734	1,231
3049	73	AV5	3.86	4.05	2.59	0.76	9.94	48.69	100.0	1,738	1,249
3054	88	AV5	3.87	4.08	2.60	0.78	9.94	48.59	100.0	1,740	1,262
3059	88	AV5	3.82	4.01	2.61	0.75	9.81	47.20	100.0	1,744	1,286
3064	88	AV5	3.81	3.99	2.65	0.75	9.80	47.18	100.0	1,763	1,315
3069	88	AV5	3.82	3.99	2.71	0.75	9.82	47.33	100.0	1,790	1,350
3074	88	AV5	3.87	4.04	2.76	0.79	9.96	48.44	100.0	1,819	1,373
3079	88	AV5	3.91	4.11	2.82	0.82	10.12	49.64	100.0	1,847	1,396
3084	88	AV5	3.85	4.05	2.83	0.80	9.91	48.18	100.0	1.845	1,412
3089	88	AV5	3.85	4.06	2.86	0.81	9,91	48.14	100.0	1.862	1.438
3094	88	AV5	3.85	4.05	2.89	0.82	9.92	48.05	100.0	1.871	1.456
3099	88	AV5	3.86	4.06	2.94	0.83	9.90	48.41	100.0	1,895	1.481
3104	88	AV5	3.81	4.00	2.94	0.82	9.72	47.08	100.0	1.894	1.507
										· , ·	.,

Page 13 of 13 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEEF OP: GRI	R CROS MGB	SSING BI	ridge No.	790207	- CFCC	EAST F	PILE N2		APE D4 Test dat	l6-42 HA te: 24-Ja	MMER In-2014
BL#	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
3109	88	AV5	3.88	4.07	3.01	0.85	9.96	48.71	10Ò.Ó	1,936	1,548
3114	88	AV5	3.88	4.07	3.05	0.85	9.98	48.75	100.0	1,949	1,568
3119	88	AV5	3.86	4.04	3.06	0.86	9.92	48.23	100.0	1,952	1,585
3124	88	AV5	3.89	4.06	3.12	0.86	10.00	48.89	100.0	1,981	1,618
3129	88	AV5	3.86	4.02	3.13	0.86	9.91	48.11	100.0	1,988	1,642
3134	88	AV5	3.89	4.05	3.19	0.86	10.02	49.01	100.0	2,017	1,674
3139	88	AV5	3.88	4.05	3.21	0.87	10.00	48.91	100.0	2,028	1,690

Test date: 24-Jan-2014

GRL E	ngineers /lethod &	, Inc. iCAP®	Results	6	PDIPLO	DT Ver.	2014.1 ·	- Printec	Page 1: 25-Jan	1 of 2 -2014		
I-4 DEE OP: GF	ER CRO RL-MGB	SSING	Bridge I	No. 7902	207 - CF	CC EA	ST PIL	E N2	A T	PE D46	6-42 HAN e: 24-Jan	/MER -2014
AR:	576.00 iı	า^2								S	SP: 0.14	5 k/ft3
LE:	95.00 f	t								E	EM: 6,17	8 ksi
WS: 14	4,050.0 f	s								J	C: 0.5	0
CSX: I CSI: I	Max Mea Max F1 c	sured (or F2 Co	Compr. St ompr. St	Stress ress			EMX: BTA:	Max Tr BETA I	ansferre ntegrity	ed Energ Factor	ду	
CSB: (Compres	sion St	ress at E	Bottom			RX0:	Max Ca	ase Metl	nod Cap	bacity (JC	C=0)
TSX: STK: (Tension O.E. Die:	Stress I sel Harr	Maximur าmer Str	n oke			RX5:	Max Ca	ase Metl	nod Cap	bacity (JC	C=0.5)
BL#	depth	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
end	ft	bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
5	27.00	5	AV5	1.71	2.11	0.54	1.07	7.08	29.37	97.6	314	21
10	28.00	5	AV5	2.07	2.58	0.70	1.33	6.33	28.75	100.0	408	109
20	29.00	10	AV10	2.09	2.51	0.75	1.32	5.99	25.62	100.0	438	179
30	30.00	10	AV10	2.34	2.77	0.95	1.42	6.82	32.21	100.0	556	282
41	31.00	11	AV11	2.57	3.04	1.16	1.47	7.50	36.72	100.0	685	404
53	32.00	12	AV12	2.77	3.29	1.37	1.48	7.99	39.93	100.0	805	522
66	33.00	13	AV11	2.83	3.35	1.46	1.48	7.99	40.26	100.0	857	562
80	34.00	14	AV14	2.88	3.40	1.50	1.50	8.11	40.63	100.0	882	600
95	35.00	15	AV15	2.93	3.46	1.51	1.50	8.23	41.21	100.0	892	617
111	36.00	16	AV16	2.97	3.55	1.52	1.49	8.34	41.59	100.0	896	564
130	37.00	19	AV19	3.00	3.59	1.55	1.46	8.41	41.96	100.0	916	553
149	38.00	19	AVIO	3.02	3.58	1.57	1.44	8.47	42.07	100.0	926	536
1/2	39.00	23	AV23	2.99	3.58	1.55	1.42	8.37	40.72	100.0	915	482
190	40.00	24		3.02	3.03	1.00	1.41	0.02	41.04	100.0	934	484
221	41.00	20		3.00	3.71	1.01	1.39	0.00	42.24	100.0	952	483
240	42.00	20	AV25 AV25	3.00	3.75	1.00	1.39	0.02 9.70	42.00	100.0	905	492
206	43.00	20	AV2J AV21	3.04	3.74	1.59	1.37	873	41.90	100.0	940	497
230	45.00	23	Δ\/23	3.04	3 76	1.55	1 38	8 66	41 75	100.0	926	495
339	46.00	20	AV19	3.06	3 76	1.50	1.39	8.68	42 27	100.0	938	510
359	47.00	20	AV20	3 13	3.83	1.60	1 40	8.92	43 78	100.0	968	512
381	48.00	22	AV22	3 14	3.83	1 64	1 39	8 89	43.09	100.0	980	525
409	49.00	28	AV27	3.20	3.89	1.66	1.39	8.99	43.15	100.0	1.026	585
430	50.00	21	AV21	3.27	3.98	1.70	1.38	9.12	44.60	100.0	1.059	610
458	51.00	28	AV28	3.31	4.04	1.73	1.37	9.10	44.68	100.0	1,095	646
489	52.00	31	AV30	3.39	4.12	1.78	1.35	9.24	45.64	100.0	1,136	675
524	53.00	35	AV35	3.44	4.13	1.82	1.33	9.19	45.30	100.0	1,171	694
558	54.00	34	AV33	3.63	4.30	2.04	1.30	9.32	46.85	100.0	1,321	709
593	55.00	35	AV35	3.73	4.38	2.12	1.32	9.34	48.25	100.0	1,395	737
632	56.00	39	AV38	3.73	4.35	2.11	1.30	9.39	48.33	100.0	1,394	748
672	57.00	40	AV39	3.74	4.36	2.13	1.30	9.44	48.89	100.0	1,401	723
711	58.00	39	AV39	3.73	4.37	2.09	1.31	9.31	48.40	100.0	1,402	701
751	59.00	40	AV39	3.72	4.32	2.06	1.30	9.31	48.23	100.0	1,405	717
788	60.00	37	AV37	3.70	4.28	2.01	1.29	9.34	47.90	100.0	1,396	710
823	61.00	35	AV34	3.66	4.23	1.94	1.28	9.30	47.39	100.0	1,383	695
858	62.00	35	AV34	3.59	4.16	1.84	1.25	9.18	45.77	100.0	1,363	699
892	63.00	34	AV34	3.51	4.08	1.68	1.23	9.21	45.09	100.0	1,321	707
929	64.00	37	AV36	3.40	3.81	1.54	1.19	9.17	42.95	100.0	1,294	/00
966	65.00	37	AV3/	3.31	3.50	1.42	1.1/	9.23	41.93	100.0	1,264	688
1013	00.00	4/		3.29	3.39	1.39	1.18	9.41	41.38	100.0	1,284	689
1030	07.00	25	AV20	3.33	3.4/ 2.50	1.4/	1.15	9.3U 0.52	41.01 10 10	100.0	1,3∠0 1 200	004 669
11074	69.00	33	AV30 AV33	3 76	3.90	1.98	1 19	9.55	44 77	100.0	1,500	663
				20				2.00			.,•.•	

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

I-4 DEER CROSSING Bridge No. 790207 - CFCC EAST PILE N2										APE D46	6-42 HA	MMER
<u>OF. Gr</u>	denth	BLC.	TYPE	CSX	CSI	CSB	TSX	STK	EMX		<u>8. 24-Ja</u> RX0	BX5
end	ft	bL0		kei	ksi	kei	kei	ft	k-ft	(%)	kins	kins
1146	70.00	20	<u>Δ\/30</u>	3 36	3 65	1 61	1 06	9 18	42 60	100 0	1 432	597
1181	71.00	35	Δ\/35	3.60	4 15	1.69	1 33	9.10	47 75	100.0	1 475	609
1218	72.00	37	Δ\/37	3 72	4.10	1.67	1.00	9.21	47.73	100.0	1 474	648
1255	73.00	37	Δ\/37	3 69	4.26	1.69	1 38	9.15	46.94	100.0	1,452	643
1200	74.00	36	Δ\/36	3.62	4.04	1 70	1 34	9.15	45.54	100.0	1 426	595
1328	75.00	37	Δ\/35	3 58	3 90	1 72	1 31	9.00	44.87	100.0	1 397	546
1363	76.00	35	Δ\/35	3 58	3 83	1 73	1.01	9.00	45 50	99.1	1 399	520
1399	77.00	36	AV/36	3 54	3.81	1 71	1.27	9.22	45.00	99.7	1 396	506
1441	78.00	42	AV42	3 56	3.87	1 79	1.05	9 40	45.78	100.0	1 464	562
1495	79.00	54	Δ\/54	3.62	3.89	1 99	0.81	9.40	46.92	98.7	1,404	807
1558	80.00	63	Δ\/62	3 74	4.06	2.06	0.01	9.00	40.52	93.8	1,007	873
1636	81.00	78	Δ\/78	3 85	4.00	2.00	1 02	9.68	49.77	91 7	1,001	887
1726	82.00	90	Δ\/89	4 01	4 35	2.14	1 13	9.00	51 50	100.0	1,570	885
1819	83.00	93	Δ\/Q3	3.94	4.00	2.00	1 10	9.70	50.69	100.0	1,572	913
1923	84.00	104	Δ\/104	3 56	3 91	2.02	1.10	9.57	47 16	100.0	1 436	897
2005	85.00	82	Δ\/81	3.84	4 14	2.10	1 15	9.07	50 51	100.0	1 497	852
2081	86.00	76	AV76	3.85	3.97	2 21	1 17	9.51	50.15	100.0	1 451	792
2149	87.00	68	AV67	3 79	3.90	2 16	1 16	9.51	48 93	100.0	1 440	748
2212	88.00	63	AV63	3 72	3.83	2 12	1 13	9 4 9	47.68	100.0	1 433	714
2269	89.00	57	AV57	3.67	3.80	2 05	1 11	9 47	46 75	100.0	1 414	699
2323	90.00	54	AV54	3.69	3.88	2.03	1.08	9.51	46 44	100.0	1 426	704
2370	91.00	47	AV47	3 78	4 03	2 09	1.00	9.58	47 12	100.0	1 478	708
2415	92.00	45	AV45	3.86	4 05	2 20	1 02	9.57	47 49	100.0	1,547	714
2462	93.00	47	AV47	3.97	4 19	2 33	0.90	9 59	48 86	100.0	1 655	758
2540	94.00	78	AV78	3.36	3.62	2.45	0.54	9.38	42.90	99.4	1,753	845
2598	95.00	58	AV55	3.58	3.81	2.43	0.75	9.43	44.83	100.0	1.728	785
2655	96.00	57	AV57	3.48	3.74	2.33	0.78	9.20	45.15	98.6	1.675	779
2718	97.00	63	AV62	3.62	3.70	2.40	0.61	9.34	44.06	100.0	1.720	800
2782	98.00	64	AV64	3.55	3.69	2.33	0.59	9.38	43.62	100.0	1.681	810
2844	99.00	62	AV61	3.51	3.71	2.29	0.61	9.43	43.42	100.0	1.638	873
2911	100.00	67	AV66	3.55	3.72	2.45	0.55	9.71	44.96	100.0	1.689	1.030
2978	101.00	67	AV67	3.59	3.73	2.57	0.46	9.76	45.19	99.8	1.764	1.047
3051	102.00	73	AV72	3.83	4.01	2.65	0.64	9.84	47.68	100.0	1,791	1,171
3139	103.00	88	AV88	3.86	4.04	2.92	0.82	9.92	48.26	100.0	1,888	1,483

Test date: 24-Jan-2014

GRL Engineers, Inc. Page 1 c Case Method & iCAP® Results PDIPLOT Ver. 2014.1 - Printed: 25-Jan-20										1 of 2 -2014		
I-4 DEER CROSSING Bridge No. 790207 - CFCC EAST PILE N2 APE D46-42 HAMME OP: GRL-MGB Test date: 24-Jan-201												/MER -2014
AR: 576.00 in^2											SP: 0.14	5 k/ft3
LE: 95.00 ft EM: 6,17 WS: 14.050.0 f/s												8 ksi
$\frac{1}{0}$	1,030.0 1/ Max Moa	S Isurad (Compr (Strace	EWX	May Tr	aneforre	d Energ	IC. 0.5	0		
CSI: N	Max F1 c	or F2 Co	ompr. St	ress			BTA:	BETA I	ntegrity	Factor) Y	
CSB: (Compres	sion St	ress at E	Bottom			RX0:	Max Ca	ase Metl	hod Cap	acity (JC	C=0)
TSX:	Tension	Stress I	Maximur	n			RX5:	Max Ca	ase Metl	hod Cap	acity (JC	C=0.5)
<u>STK: (</u>	D.E. Die:	sel Han	mer Str	oke		000	TOX	071/	= 10/	574		
BL#	Elev.	BLC	TYPE	CSX	CSI	CSB	ISX	SIK	EMX	BIA	HX0 king	RX5
ena 5	25 /	DI/11	۵\/5	KSI 1 71	2 1 1	6 KSI	1 07	וו 7 08	K-IL 20.37	(%) 97.6	KIPS	KIPS 21
10	24.4	5	AV5	2.07	2.58	0.70	1.33	6.33	28.75	100.0	408	109
20	23.4	10	AV10	2.09	2.51	0.75	1.32	5.99	25.62	100.0	438	179
30	22.4	10	AV10	2.34	2.77	0.95	1.42	6.82	32.21	100.0	556	282
41	21.4	11	AV11	2.57	3.04	1.16	1.47	7.50	36.72	100.0	685	404
53	20.4	12	AV12	2.77	3.29	1.37	1.48	7.99	39.93	100.0	805	522
66	19.4	13	AV11	2.83	3.35	1.46	1.48	7.99	40.26	100.0	857	562
80	18.4	14	AV14	2.88	3.40	1.50	1.50	8.11 0.00	40.63	100.0	882	600
111	17.4	15	AV15 AV16	2.93	3.40	1.51	1.50	0.23 8 34	41.21	100.0	892 896	564
130	15.4	19	AV19	3.00	3.59	1.55	1.46	8.41	41.96	100.0	916	553
149	14.4	19	AV18	3.02	3.58	1.57	1.44	8.47	42.07	100.0	926	536
172	13.4	23	AV23	2.99	3.58	1.55	1.42	8.37	40.72	100.0	915	482
196	12.4	24	AV24	3.02	3.63	1.58	1.41	8.52	41.54	100.0	934	484
221	11.4	25	AV24	3.06	3.71	1.61	1.39	8.68	42.24	100.0	952	483
246	10.4	25	AV25	3.08	3.75	1.63	1.39	8.82	42.88	100.0	965	492
272	9.4 8.4	20	AV25 AV24	3.04	3.74	1.59	1.37	8.70 8.73	41.90	100.0	940 940	497 495
319	7.4	23	AV23	3.03	3.76	1.56	1.38	8.66	41.75	100.0	926	495
339	6.4	20	AV19	3.06	3.76	1.58	1.39	8.68	42.27	100.0	938	510
359	5.4	20	AV20	3.13	3.83	1.62	1.40	8.92	43.78	100.0	968	512
381	4.4	22	AV22	3.14	3.83	1.64	1.39	8.89	43.09	100.0	980	525
409	3.4	28	AV2/	3.20	3.89	1.66	1.39	8.99	43.15	100.0	1,026	585
430 458	2.4 1 /	21	AV21 AV28	3.27 3.31	3.98	1.70	1.30	9.12	44.60	100.0	1,059	646
489	0.4	31	AV20 AV30	3 39	4 12	1 78	1.37	9.10	45 64	100.0	1,000	675
524	-0.6	35	AV35	3.44	4.13	1.82	1.33	9.19	45.30	100.0	1,171	694
558	-1.6	34	AV33	3.63	4.30	2.04	1.30	9.32	46.85	100.0	1,321	709
593	-2.6	35	AV35	3.73	4.38	2.12	1.32	9.34	48.25	100.0	1,395	737
632	-3.6	39	AV38	3.73	4.35	2.11	1.30	9.39	48.33	100.0	1,394	748
6/2	-4.6	40	AV39	3.74	4.36	2.13	1.30	9.44	48.89	100.0	1,401	723
711	-0.0 -6.6	39	AV39 AV/39	3.73	4.37	2.09	1.31	9.31	48.40	100.0	1,402	701
788	-7.6	37	AV35 AV37	3 70	4 28	2.00	1 29	9.34	47 90	100.0	1,405	710
823	-8.6	35	AV34	3.66	4.23	1.94	1.28	9.30	47.39	100.0	1,383	695
858	-9.6	35	AV34	3.59	4.16	1.84	1.25	9.18	45.77	100.0	1,363	699
892	-10.6	34	AV34	3.51	4.08	1.68	1.23	9.21	45.09	100.0	1,321	707
929	-11.6	37	AV36	3.40	3.81	1.54	1.19	9.17	42.95	100.0	1,294	700
966	-12.6	37	AV3/	3.31 3.20	3.5U 3.20	1.42	1.1/	9.23	41.93	100.0	1,264 1.294	680 680
1038	-13.0	47 25	AV40 AV25	3.29	3 47	1 47	1 15	9.41	41.30	100.0	1,204	664
1074	-15.6	36	AV36	3.44	3.56	1.55	1.16	9.53	42.13	100.0	1,380	668
1107	-16.6	33	AV33	3.76	3.90	1.98	1.19	9.56	44.77	100.0	1,573	663

3139 -50.6

88 AV88

3.86

4.04

Page 2 of 2 PDIPLOT Ver. 2014.1 - Printed: 25-Jan-2014

9.92 48.26 100.0 1,888 1,483

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	I-4 DEER CROSSING Bridge No. 790207 - CFCC EAST PILE N2 APE D46-42 HAN												MMER
BL# Elev. BLC TYPE CSX CSI CSB TSX STK BIX RX0 RX5 end bl/ft ksi ksi ksi ksi ksi ft k-ft (%) kips kips 1146 -17.6 39 AV33 3.26 3.65 1.61 1.06 9.18 42.60 10.00 1.475 609 1218 -19.6 37 AV37 3.69 4.26 1.69 1.33 9.21 47.75 100.0 1.474 648 1291 -21.6 36 AV35 3.58 3.90 1.72 1.31 9.06 44.87 100.0 1.426 592 1328 -22.6 37 AV35 3.58 3.83 1.71 1.27 9.18 4550 99.7 1.396 506 1344 -25.6 42 AV42 3.66 3.87 1.79 1.05 9.40 45.78 100.0 1.464 <td>OP: GF</td> <td>RL-MGB</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Τ</td> <td>est date</td> <td>e: 24-Ja</td> <td>n-2014</td>	OP: GF	RL-MGB								Τ	est date	e: 24-Ja	n-2014
end bl/ft ksi ksi ksi ft k-ft (%) kips kips 1146 -17.6 39 AV39 3.36 3.65 1.61 1.06 9.18 42.60 100.0 1.432 597 1181 -18.6 37 AV37 3.72 4.29 1.67 1.37 9.21 47.75 100.0 1.474 648 1255 -20.6 37 AV37 3.69 4.26 1.69 1.38 9.15 46.94 100.0 1.474 648 1291 -21.6 36 AV36 3.62 4.04 1.70 1.34 9.05 45.57 100.0 1.426 595 1328 -22.6 37 AV35 3.58 3.90 1.72 1.31 9.06 44.87 10.0 1.464 562 1441 -25.6 42 AV42 3.56 3.87 1.79 1.05 9.40 45.78 10.0 1.572	BL#	Elev.	BLC	TYPE	CSX	CSI	CSB	TSX	STK	EMX	BTA	RX0	RX5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	end		bl/ft		ksi	ksi	ksi	ksi	ft	k-ft	(%)	kips	kips
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1146	-17.6	39	AV39	3.36	3.65	1.61	1.06	9.18	42.60	100.0	1,432	597
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1181	-18.6	35	AV35	3.69	4.15	1.69	1.33	9.21	47.75	100.0	1,475	609
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1218	-19.6	37	AV37	3.72	4.29	1.67	1.37	9.21	47.73	100.0	1,474	648
1291-21.636AV363.624.041.701.349.0545.57100.01,4265951328-22.637AV353.583.901.721.319.0644.87100.01,3975461363-23.635AV363.583.831.731.279.1845.5099.11,3995201399-24.636AV423.563.871.791.059.4045.78100.01,4645621495-26.654AV543.623.891.990.819.6046.9298.71,5978071558-27.663AV623.744.062.060.889.7048.4793.81,6018731636-28.678AV783.854.192.141.029.6849.2791.71,5788871726-29.690AV894.014.352.301.139.7651.50100.01,5728131923-31.6104AV1043.563.912.191.009.5747.16100.01,4377822081-33.676AV763.853.972.211.179.1550.15100.01,4477822081-33.676AV633.723.832.121.139.4947.68100.01,443714269-36.657AV573.67 <td< td=""><td>1255</td><td>-20.6</td><td>37</td><td>AV37</td><td>3.69</td><td>4.26</td><td>1.69</td><td>1.38</td><td>9.15</td><td>46.94</td><td>100.0</td><td>1,452</td><td>643</td></td<>	1255	-20.6	37	AV37	3.69	4.26	1.69	1.38	9.15	46.94	100.0	1,452	643
1328 -22.6 37AV353.583.90 1.72 1.31 9.06 44.87 100.0 1.397 546 1363 -23.6 35AV353.583.83 1.73 1.27 9.18 45.50 99.1 1.399 520 1399 -24.6 36AV36 3.54 3.81 1.71 1.21 9.22 45.16 99.7 1.396 506 1441 -25.6 42AV42 3.56 3.87 1.79 1.05 9.40 45.78 100.0 1.464 562 1495 -26.6 54AV54 3.62 3.89 1.99 0.81 9.60 46.92 98.7 1.597 807 1558 -27.6 63AV62 3.74 4.06 2.06 0.88 9.70 48.47 93.8 1.601 873 1636 -28.6 78AV78 3.85 4.19 2.14 1.02 9.68 49.27 91.7 1.578 887 1726 -29.6 90AV89 4.01 4.35 2.30 1.13 9.76 51.50 100.0 1.533 913 1923 -31.6 104 AV104 3.56 3.91 2.19 1.00 9.77 50.51 100.0 1.436 897 2005 -32.6 82 AV81 3.84 4.14 2.28 1.15 9.47 50.51 100.0 1.446 2014 -33.6 76 AV76 3.87	1291	-21.6	36	AV36	3.62	4.04	1.70	1.34	9.05	45.57	100.0	1,426	595
1363 -23.6 35AV353.583.831.731.279.1845.5099.11,3995201399 -24.6 36AV363.543.811.711.219.2245.1699.71,3965061441 -25.6 42AV423.563.871.791.059.4045.78100.01,4645621495 -26.6 54AV543.623.891.990.819.6046.9298.71,5978071558 -27.6 63AV623.744.062.060.889.7048.4793.81,6018731636 -28.6 78AV783.854.192.141.029.6849.2791.71,5788871726 -29.6 90AV894.014.352.301.139.7651.50100.01,5728851819 -30.6 93AV933.944.072.321.109.7250.69100.01,4368972005 -32.6 82AV813.844.142.281.159.4750.51100.01,4517922014 -34.6 68AV673.793.902.161.169.5148.83100.01,4407482212 -35.6 63AV633.723.832.121.139.4947.68100.01,4407482212 -35.6 657 </td <td>1328</td> <td>-22.6</td> <td>37</td> <td>AV35</td> <td>3.58</td> <td>3.90</td> <td>1.72</td> <td>1.31</td> <td>9.06</td> <td>44.87</td> <td>100.0</td> <td>1,397</td> <td>546</td>	1328	-22.6	37	AV35	3.58	3.90	1.72	1.31	9.06	44.87	100.0	1,397	546
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1363	-23.6	35	AV35	3.58	3.83	1.73	1.27	9.18	45.50	99.1	1,399	520
1441-25.642AV423.563.871.791.059.4045.78100.01,4645621495-26.654AV543.623.891.990.819.6046.9298.71,5978071558-27.663AV623.744.062.060.889.7048.4793.81,6018731636-28.678AV783.854.192.141.029.6849.2791.71,5788871726-29.690AV894.014.352.301.139.7651.50100.01,5728851819-30.693AV933.944.072.321.109.7250.69100.01,4368972005-32.682AV813.844.142.281.159.4750.51100.01,4478522081-33.676AV763.853.972.211.179.5150.15100.01,4417922149-34.668AV673.793.902.161.169.5148.93100.01,4416992323-37.654AV543.693.882.031.089.5146.75100.01,4146992323-37.654AV473.784.032.091.069.5847.12100.01,4747082415-39.645AV453.86 <td< td=""><td>1399</td><td>-24.6</td><td>36</td><td>AV36</td><td>3.54</td><td>3.81</td><td>1.71</td><td>1.21</td><td>9.22</td><td>45.16</td><td>99.7</td><td>1,396</td><td>506</td></td<>	1399	-24.6	36	AV36	3.54	3.81	1.71	1.21	9.22	45.16	99.7	1,396	506
1495-26.654AV54 3.62 3.89 1.99 0.81 9.60 46.92 98.7 $1,597$ 807 1558-27.663AV62 3.74 4.06 2.06 0.88 9.70 48.47 93.8 $1,601$ 873 1636-28.678AV78 3.85 4.19 2.14 1.02 9.68 49.27 91.7 $1,578$ 887 1726-29.690AV89 4.01 4.35 2.30 1.13 9.76 51.50 100.0 $1,572$ 885 1819-30.693AV93 3.94 4.07 2.32 1.10 9.72 50.69 100.0 $1,533$ 913 1923-31.6104AV104 3.56 3.91 2.19 1.00 9.57 47.16 100.0 $1,436$ 897 2005-32.682AV81 3.84 4.14 2.28 1.15 9.47 50.51 100.0 $1,447$ 852 2081-33.676AV76 3.85 3.97 2.21 1.17 9.51 50.15 100.0 $1,440$ 748 2212-35.663AV63 3.72 3.83 2.12 1.13 9.49 47.68 100.0 $1,433$ 714 2269-36.6 57 AV57 3.67 3.80 2.05 1.11 9.47 46.75 100.0 $1,478$ 708 2313-37.654AV54 3.69 <	1441	-25.6	42	AV42	3.56	3.87	1.79	1.05	9.40	45.78	100.0	1,464	562
1558 -27.6 63AV62 3.74 4.06 2.06 0.88 9.70 48.47 93.8 $1,601$ 873 1636 -28.6 78AV78 3.85 4.19 2.14 1.02 9.68 49.27 91.7 $1,578$ 887 1726 -29.6 90AV89 4.01 4.35 2.30 1.13 9.76 51.50 100.0 $1,572$ 885 1819 -30.6 93AV93 3.94 4.07 2.32 1.10 9.72 50.69 100.0 $1,572$ 885 1819 -30.6 93AV93 3.94 4.07 2.32 1.10 9.77 47.16 100.0 $1,436$ 897 2005 -32.6 82 AV81 3.84 4.14 2.28 1.15 9.47 50.51 100.0 $1,476$ 897 2081 -33.6 76AV76 3.85 3.97 2.21 1.17 9.51 50.51 100.0 $1,440$ 748 2149 -34.6 68AV67 3.79 3.90 2.16 1.16 9.51 48.93 100.0 $1,440$ 748 2212 -35.6 63AV63 3.72 3.83 2.12 1.13 9.49 47.68 100.0 $1,440$ 748 2212 -35.6 63AV63 3.72 3.83 2.05 1.11 9.47 46.75 100.0 $1,440$ 748 2212 -35.6 63 <td< td=""><td>1495</td><td>-26.6</td><td>54</td><td>AV54</td><td>3.62</td><td>3.89</td><td>1.99</td><td>0.81</td><td>9.60</td><td>46.92</td><td>98.7</td><td>1,597</td><td>807</td></td<>	1495	-26.6	54	AV54	3.62	3.89	1.99	0.81	9.60	46.92	98.7	1,597	807
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1558	-27.6	63	AV62	3.74	4.06	2.06	0.88	9.70	48.47	93.8	1,601	873
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1636	-28.6	78	AV78	3.85	4.19	2.14	1.02	9.68	49.27	91.7	1,578	887
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1726	-29.6	90	AV89	4.01	4.35	2.30	1.13	9.76	51.50	100.0	1.572	885
1923 -31.6 104AV104 3.56 3.91 2.19 1.00 9.57 47.16 100.0 $1,436$ 897 2005 -32.6 82AV81 3.84 4.14 2.28 1.15 9.47 50.51 100.0 $1,497$ 852 2081 -33.6 76AV76 3.85 3.97 2.21 1.17 9.51 50.15 100.0 $1,497$ 852 2149 -34.6 68AV67 3.79 3.90 2.16 1.16 9.51 48.93 100.0 $1,440$ 748 2212 -35.6 63AV63 3.72 3.83 2.12 1.13 9.49 47.68 100.0 $1,433$ 714 2269 -36.6 57 AV57 3.67 3.80 2.05 1.11 9.47 46.75 100.0 $1,426$ 704 2370 -38.6 47 AV47 3.78 4.03 2.09 1.06 9.58 47.12 100.0 $1,478$ 708 2415 -39.6 45 AV45 3.86 4.05 2.20 1.02 9.57 47.49 100.0 $1,547$ 714 2462 -40.6 47 AV47 3.97 4.19 2.33 0.90 9.59 48.86 100.0 $1,655$ 758 2540 -41.6 78 AV78 3.36 3.62 2.45 0.54 9.38 42.90 99.4 $1,753$ 845 2598 -42.6 <td< td=""><td>1819</td><td>-30.6</td><td>93</td><td>AV93</td><td>3.94</td><td>4.07</td><td>2.32</td><td>1.10</td><td>9.72</td><td>50.69</td><td>100.0</td><td>1.533</td><td>913</td></td<>	1819	-30.6	93	AV93	3.94	4.07	2.32	1.10	9.72	50.69	100.0	1.533	913
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1923	-31.6	104	AV104	3.56	3.91	2.19	1.00	9.57	47.16	100.0	1,436	897
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2005	-32.6	82	AV81	3.84	4.14	2.28	1.15	9.47	50.51	100.0	1.497	852
2149 -34.6 68 AV67 3.79 3.90 2.16 1.16 9.51 48.93 100.0 1,440 748 2212 -35.6 63 AV63 3.72 3.83 2.12 1.13 9.49 47.68 100.0 1,440 748 2269 -36.6 57 AV57 3.67 3.80 2.05 1.11 9.47 46.75 100.0 1,414 699 2323 -37.6 54 AV54 3.69 3.88 2.03 1.08 9.51 46.44 100.0 1,426 704 2370 -38.6 47 AV47 3.78 4.03 2.09 1.06 9.58 47.12 100.0 1,478 708 2415 -39.6 45 AV45 3.86 4.05 2.20 1.02 9.57 47.49 100.0 1,547 714 2462 -40.6 47 AV47 3.97 4.19 2.33 0.90 9.59 48.86 100.0 1,753 845 2598 -42.6 58	2081	-33.6	76	AV76	3.85	3.97	2.21	1.17	9.51	50.15	100.0	1.451	792
2212 -35.6 63 AV63 3.72 3.83 2.12 1.13 9.49 47.68 100.0 1,433 714 2269 -36.6 57 AV57 3.67 3.80 2.05 1.11 9.47 46.75 100.0 1,414 699 2323 -37.6 54 AV54 3.69 3.88 2.03 1.08 9.51 46.44 100.0 1,426 704 2370 -38.6 47 AV47 3.78 4.03 2.09 1.06 9.58 47.12 100.0 1,478 708 2415 -39.6 45 AV45 3.86 4.05 2.20 1.02 9.57 47.49 100.0 1,478 708 2415 -39.6 45 AV47 3.97 4.19 2.33 0.90 9.59 48.86 100.0 1,655 758 2540 -41.6 78 AV78 3.36 3.62 2.45 0.54 9.38 42.90 9.4 1,753 845 2598 -42.6 58 <t< td=""><td>2149</td><td>-34.6</td><td>68</td><td>AV67</td><td>3.79</td><td>3.90</td><td>2.16</td><td>1.16</td><td>9.51</td><td>48.93</td><td>100.0</td><td>1.440</td><td>748</td></t<>	2149	-34.6	68	AV67	3.79	3.90	2.16	1.16	9.51	48.93	100.0	1.440	748
2269 -36.6 57 AV57 3.67 3.80 2.05 1.11 9.47 46.75 100.0 1,414 699 2323 -37.6 54 AV54 3.69 3.88 2.03 1.08 9.51 46.44 100.0 1,426 704 2370 -38.6 47 AV47 3.78 4.03 2.09 1.06 9.58 47.12 100.0 1,478 708 2415 -39.6 45 AV45 3.86 4.05 2.20 1.02 9.57 47.49 100.0 1,547 714 2462 -40.6 47 AV47 3.97 4.19 2.33 0.90 9.59 48.86 100.0 1,655 758 2540 -41.6 78 AV78 3.36 3.62 2.45 0.54 9.38 42.90 99.4 1,753 845 2598 -42.6 58 AV55 3.58 3.81 2.43 0.75 9.43 44.83 100.0 1,728 785 2655 -43.6 57 <	2212	-35.6	63	AV63	3.72	3.83	2.12	1.13	9.49	47.68	100.0	1.433	714
2323 -37.6 54 AV54 3.69 3.88 2.03 1.08 9.51 46.44 100.0 1,426 704 2370 -38.6 47 AV47 3.78 4.03 2.09 1.06 9.58 47.12 100.0 1,478 708 2415 -39.6 45 AV45 3.86 4.05 2.20 1.02 9.57 47.49 100.0 1,547 714 2462 -40.6 47 AV47 3.97 4.19 2.33 0.90 9.59 48.86 100.0 1,655 758 2540 -41.6 78 AV78 3.36 3.62 2.45 0.54 9.38 42.90 99.4 1,753 845 2598 -42.6 58 AV55 3.58 3.81 2.43 0.75 9.43 44.83 100.0 1,728 785 2655 -43.6 57 AV57 3.48 3.74 2.33 0.78 9.20 45.15 98.6 1,675 779 2718 -44.6 63 <t< td=""><td>2269</td><td>-36.6</td><td>57</td><td>AV57</td><td>3.67</td><td>3.80</td><td>2.05</td><td>1.11</td><td>9.47</td><td>46.75</td><td>100.0</td><td>1.414</td><td>699</td></t<>	2269	-36.6	57	AV57	3.67	3.80	2.05	1.11	9.47	46.75	100.0	1.414	699
2370 -38.6 47 AV47 3.78 4.03 2.09 1.06 9.58 47.12 100.0 1,478 708 2415 -39.6 45 AV45 3.86 4.05 2.20 1.02 9.57 47.49 100.0 1,478 714 2462 -40.6 47 AV47 3.97 4.19 2.33 0.90 9.59 48.86 100.0 1,655 758 2540 -41.6 78 AV78 3.36 3.62 2.45 0.54 9.38 42.90 99.4 1,753 845 2598 -42.6 58 AV55 3.58 3.81 2.43 0.75 9.43 44.83 100.0 1,728 785 2655 -43.6 57 AV57 3.48 3.74 2.33 0.78 9.20 45.15 98.6 1,675 779 2718 -44.6 63 AV62 3.62 3.70 2.40 0.61 9.34 44.06 100.0 1,720 800 2782 -45.6 64 <t< td=""><td>2323</td><td>-37.6</td><td>54</td><td>AV54</td><td>3.69</td><td>3.88</td><td>2.03</td><td>1.08</td><td>9.51</td><td>46.44</td><td>100.0</td><td>1.426</td><td>704</td></t<>	2323	-37.6	54	AV54	3.69	3.88	2.03	1.08	9.51	46.44	100.0	1.426	704
2415 -39.6 45 AV45 3.86 4.05 2.20 1.02 9.57 47.49 100.0 1,547 714 2462 -40.6 47 AV47 3.97 4.19 2.33 0.90 9.59 48.86 100.0 1,655 758 2540 -41.6 78 AV78 3.36 3.62 2.45 0.54 9.38 42.90 99.4 1,753 845 2598 -42.6 58 AV55 3.58 3.81 2.43 0.75 9.43 44.83 100.0 1,728 785 2655 -43.6 57 AV57 3.48 3.74 2.33 0.78 9.20 45.15 98.6 1,675 779 2718 -44.6 63 AV62 3.62 3.70 2.40 0.61 9.34 44.06 100.0 1,720 800 2782 -45.6 64 AV64 3.55 3.69 2.33 0.59 9.38 43.62 100.0 1,638 873 2911 -47.6 67 <t< td=""><td>2370</td><td>-38.6</td><td>47</td><td>AV47</td><td>3.78</td><td>4.03</td><td>2.09</td><td>1.06</td><td>9.58</td><td>47.12</td><td>100.0</td><td>1.478</td><td>708</td></t<>	2370	-38.6	47	AV47	3.78	4.03	2.09	1.06	9.58	47.12	100.0	1.478	708
2462 -40.6 47 AV47 3.97 4.19 2.33 0.90 9.59 48.86 100.0 1,655 758 2540 -41.6 78 AV78 3.36 3.62 2.45 0.54 9.38 42.90 99.4 1,753 845 2598 -42.6 58 AV55 3.58 3.81 2.43 0.75 9.43 44.83 100.0 1,728 785 2655 -43.6 57 AV57 3.48 3.74 2.33 0.78 9.20 45.15 98.6 1,675 779 2718 -44.6 63 AV62 3.62 3.70 2.40 0.61 9.34 44.06 100.0 1,720 800 2782 -45.6 64 AV64 3.55 3.69 2.33 0.59 9.38 43.62 100.0 1,638 873 2844 -46.6 62 AV61 3.51 3.71 2.29 0.61 9.43 43.42 100.0 1,689 1,030 2978 -48.6 67	2415	-39.6	45	AV45	3.86	4.05	2.20	1.02	9.57	47.49	100.0	1.547	714
2540 -41.6 78 AV78 3.36 3.62 2.45 0.54 9.38 42.90 99.4 1,753 845 2598 -42.6 58 AV55 3.58 3.81 2.43 0.75 9.43 44.83 100.0 1,728 785 2655 -43.6 57 AV57 3.48 3.74 2.33 0.78 9.20 45.15 98.6 1,675 779 2718 -44.6 63 AV62 3.62 3.70 2.40 0.61 9.34 44.06 100.0 1,720 800 2782 -45.6 64 AV64 3.55 3.69 2.33 0.59 9.38 43.62 100.0 1,681 810 2844 -46.6 62 AV61 3.51 3.71 2.29 0.61 9.43 43.42 100.0 1,638 873 2911 -47.6 67 AV66 3.55 3.72 2.45 0.55 9.71 44.96 100.0 1,689 1,030 2978 -48.6 67	2462	-40.6	47	AV47	3.97	4.19	2.33	0.90	9.59	48.86	100.0	1,655	758
2598 -42.6 58 AV55 3.58 3.81 2.43 0.75 9.43 44.83 100.0 1,728 785 2655 -43.6 57 AV57 3.48 3.74 2.33 0.78 9.20 45.15 98.6 1,675 779 2718 -44.6 63 AV62 3.62 3.70 2.40 0.61 9.34 44.06 100.0 1,720 800 2782 -45.6 64 AV64 3.55 3.69 2.33 0.59 9.38 43.62 100.0 1,681 810 2844 -46.6 62 AV61 3.51 3.71 2.29 0.61 9.43 43.42 100.0 1,638 873 2911 -47.6 67 AV66 3.55 3.72 2.45 0.55 9.71 44.96 100.0 1,689 1,030 2978 -48.6 67 AV67 3.59 3.73 2.57 0.46 9.76 45.19 99.8 1,764 1,047 3051 -49.6 73	2540	-41.6	78	AV78	3.36	3.62	2.45	0.54	9.38	42.90	99.4	1,753	845
2655 -43.6 57 AV57 3.48 3.74 2.33 0.78 9.20 45.15 98.6 1,675 779 2718 -44.6 63 AV62 3.62 3.70 2.40 0.61 9.34 44.06 100.0 1,720 800 2782 -45.6 64 AV64 3.55 3.69 2.33 0.59 9.38 43.62 100.0 1,681 810 2844 -46.6 62 AV61 3.51 3.71 2.29 0.61 9.43 43.42 100.0 1,638 873 2911 -47.6 67 AV66 3.55 3.72 2.45 0.55 9.71 44.96 100.0 1,689 1,030 2978 -48.6 67 AV67 3.59 3.73 2.57 0.46 9.76 45.19 99.8 1,764 1,047 3051 -49.6 73 AV72 3.83 4.01 2.65 0.64 9.84 47.68 100.0 1.791 1 171	2598	-42.6	58	AV55	3 58	3.81	2 43	0.75	9 43	44 83	100.0	1 728	785
2718 -44.6 63 AV62 3.62 3.70 2.40 0.61 9.34 44.06 100.0 1,720 800 2782 -45.6 64 AV64 3.55 3.69 2.33 0.59 9.38 43.62 100.0 1,681 810 2844 -46.6 62 AV61 3.51 3.71 2.29 0.61 9.43 43.42 100.0 1,638 873 2911 -47.6 67 AV66 3.55 3.72 2.45 0.55 9.71 44.96 100.0 1,689 1,030 2978 -48.6 67 AV67 3.59 3.73 2.57 0.46 9.76 45.19 99.8 1,764 1,047 3051 -49.6 73 AV72 3.83 4.01 2.65 0.64 9.84 47.68 100.0 1.791 1.171	2655	-43.6	57	AV57	3 48	3 74	2 33	0.78	9.20	45 15	98.6	1 675	779
2782 -45.6 64 AV64 3.55 3.69 2.33 0.59 9.38 43.62 100.0 1,681 810 2844 -46.6 62 AV61 3.51 3.71 2.29 0.61 9.43 43.42 100.0 1,638 873 2911 -47.6 67 AV66 3.55 3.72 2.45 0.55 9.71 44.96 100.0 1,689 1,030 2978 -48.6 67 AV67 3.59 3.73 2.57 0.46 9.76 45.19 99.8 1,764 1,047 3051 -49.6 73 AV72 3.83 4.01 2.65 0.64 9.84 47.68 100.0 1.791 1.171	2718	-44.6	63	AV62	3.62	3 70	2 40	0.61	9.34	44 06	100.0	1 720	800
2844 -46.6 62 AV61 3.51 3.71 2.29 0.61 9.43 43.42 100.0 1,638 873 2911 -47.6 67 AV66 3.55 3.72 2.45 0.55 9.71 44.96 100.0 1,689 1,030 2978 -48.6 67 AV67 3.59 3.73 2.57 0.46 9.76 45.19 99.8 1,764 1,047 3051 -49.6 73 AV72 3.83 4.01 2.65 0.64 9.84 47.68 100.0 1.791 1.171	2782	-45.6	64	AV64	3 55	3 69	2.33	0.59	9.38	43.62	100.0	1 681	810
2911 -47.6 67 AV66 3.55 3.72 2.45 0.55 9.71 44.96 100.0 1,689 1,030 2978 -48.6 67 AV67 3.59 3.73 2.57 0.46 9.76 45.19 99.8 1,764 1,047 3051 -49.6 73 AV72 3.83 4.01 2.65 0.64 9.84 47.68 100.0 1.791 1.171	2844	-46.6	62	AV61	3 51	3 71	2 29	0.61	9.43	43.42	100.0	1,638	873
2978 -48.6 67 AV67 3.59 3.73 2.57 0.46 9.76 45.19 99.8 1,764 1,047 3051 -49.6 73 AV72 3.83 4.01 2.65 0.64 9.84 47.68 100.0 1,791 1.171	2911	-47.6	67	AV66	3 55	3 72	2 45	0.55	9 71	44.96	100.0	1 689	1 030
3051 -49.6 73 AV72 3.83 4.01 2.65 0.64 9.84 47.68 100.0 1.791 1.171	2978	-48.6	67	AV67	3 59	3 73	2.57	0.46	9.76	45 19	99.8	1 764	1 047
	3051	-49.6	73	AV72	3.83	4.01	2.65	0.64	9.84	47.68	100.0	1.791	1.171

2.92

0.82

GRL Engineers, Inc.

Pile Driving Analyzer ®

<u>Project Information</u> PROJECT: I-4 DEER CROSSING PILE NAME: CFCC EAST PILE N2 DESCR: APE D46-42 HAMMER OPERATOR: GRL-MGB FILE: CFCC EAST PILE N2 1/24/2014 9:01:06 AM Blow Number 5

Pile Properties

LE 95.00 ft AR 576.00 in^2 EΜ 6178 ksi SP 0.145 k/ft3 WS 14050.0 f/s EA/C 253.3 ksec/ft 2L/C 13.50 ms JC 0.50 [] 27.00 ft LP

Quantity Results

CSX 2.00 ksi CSI 2.51 ksi CSB 0.73 ksi TSX 1.29 ksi STK 6.98 ft EMX 31.75 k-ft BTA 100.0 (%) RX0 424 kips RX5 60 kips

Sensors

F1: [F978] 94.4 (1) F2: [A407] 99.3 (1) A1: [19932] 1020 g's/v (1) A2: [29018] 1150 g's/v (1) CLIP: OK

GRL Engineers, Inc.

Pile Driving Analyzer ®

PROJECT: I-4 DEER CROSSING PILE NAME: CFCC EAST PILE N2 DESCR: APE D46-42 HAMMER **OPERATOR: GRL-MGB** FILE: CFCC EAST PILE N2 1/24/2014 1:05:15 PM Blow Number 3139

Pile Properties

LE 95.00 ft AR 576.00 in^2 EΜ 6178 ksi SP 0.145 k/ft3 WS 14050.0 f/s EA/C 253.3 ksec/ft 2L/C 13.80 ms JC 0.50 [] 103.00 ft LP

Quantity Results

CSX 3.97 ksi CSI 4.14 ksi CSB 3.28 ksi TSX 0.90 ksi STK 10.28 ft EMX 51.01 k-ft BTA 100.0 (%) RX0 2067 kips RX5 1719 kips

Sensors

F1: [F978] 94.4 (0.98) F2: [A407] 99.3 (0.98) A1: [19932] 1020 g's/v (1.02) A2: [29018] 1150 g's/v (1.02) CLIP: OK

	· <u>· · · ·</u>				P	ILE	DRI	VING IN	FORM	ATION		Constru 1
		Struc	ture	Nun	nber	:			·			
IN PRO	J. ID #	408	464	i-1-	52-c	1	DA	TE 1-23-	14 STATIO	N NO.	,	
PILE SIZ	Е <u>24</u> "	_ AC	TUA	L/AU	TH LE	ENGT	н_ 10	0.00' BE	NT/PIER NO	3-1	PILE NO.	N-2
HAMMER	R TYPE	ÂPE	D-40	G- H2	R	ATED	ENERG	Y 114,109	Ft/165 OPE	ERATING RATI	E <u>Varie</u>	:5
REF. ELE	EV	52.3	7'			/IN. T	IP ELEV	/	, PILE	E CUTOFF ELE	EV/	
DRIVING	CRITE	RIA			Expe	rim	ental	Pile.	No.2			
										· · · ·		
ILE CUS	SHION T	HICKN	IESS	AND	MAT	ERIA	L Pine	Plymoo	4 6''			
IAMMER	CUSHI	ON TH	IICKN	IESS	AND	MAT	ERIAL	3 1/2 " (2-	1º Micarta	+ 3- 1/2"	Aluminu	n)
VEATHE	R	lear		TE	EMP	52	STAR		:07 am.	STOP TIM	Ε	/
ILE DA	ATA											
AY ITEN	1 NO		N/	А				WORK	ORDER NO.		• • •	
ANUFA	CTURED	BY					T.I	B.M./B.M. EL	EV N/A	GROUND	ROD READ	N/A
ATE CA	ST	7-24	-13			ROD	READ	/	PILE HE	AD ROD REAL		/
ANUFA	TURER	'S PIL	E NO).			-	H.I.	F	PILE HEAD EL	EV.	
LE HEA	D CHAN	FER_	3/4	 X	3 ``			PILE TIP EL	EV.			
LE TIP (CHAMFE	R	3/4	<u>x</u>	3"			GR	OUND ELEV.	4	1,20'	
JALIFE) INSPE	CTOR	'S NA	ME:		6.	nzalo	Silva	-		4102806	7
	F	Τ	1	1	1							
HOLE	D TES	HECK			LICE	Э	4				24	di kana a
/ EACH	C LOA	SET C		TION	OF SF	E COL		PILE L	ENGTH		EXTENSION	BUILD UP
PREFOR	DYNAMI PAY SE	NO PAY	REDRIVE	EXTRAC	DRIVING	PILE TYP	BATTER	ORIGINAL FURNISHED	TOTAL LENGTH WITH EXTENSION	PENETRATION BELOW GROUND	AUTHORIZED	ACTUAL
TES	- Pred		ـــــــــــــــــــــــــــــــــــــ	15'		· ·						
-]	1	1	<u>q</u>	1	.)			00'			, ,	
/	<u>emp/ar</u>	<u>e</u> r	in an	ved	97	reje	erence	- 43 -	new ref	6 be	aw. 60	+ 109
<u> </u>	nll b	e F	llec)	95	som	e orig	final re	ference	•		
			-								. ¹ .	· · · ·
total	blou	5	2	3.14	3							
Trainee e	xperienc	evide	nce oi	nly:							4 	
	a indine	e being	supe	ivised	i by th	ie Qua	innea inspe	ector:	C.	TQP Trainee		
tify the Pi	le Driving	Recor	d acci	uracy	and th	nat the	named at	oove Trainee h	as observed th	e full pile installa	ation:	

N-2 (2)

Bridge			Ext	Pile	No. 2						
End/Bent			(
Pile				No. 2							
Reference	Elevation 52.37										
Depth	Blows	Stroke	Fuel S.		Comments						
12											
23											
34											
45			1								
56											
67											
78											
89	6										
910	1										
1011	- C										
1112	15										
1213	Ĩ										
13-14	6										
14-15	ſ										
15-16											
16-17											
17-18	- -										
18-19											
19-20	~										
20-21	võ										
21-22	è										
22-23	3										
23-24	K.										
24-25											
25-26	1				Start @ 9:07 o.m						
26-27	310	5,77									
27-28	<u> </u>			I							
28-29	10	5.91	700								
29-30	/0	6.81									
30-31		7./5									
31-32	12	7.90									
32-33	/3	7.21	760								
33-34	14	8.34	750								
34-35	/5	8./6									
35-36	/6	7.77									
36-37	19	8.04									
37-38	19	8.3/	0.0.0								
38-39	43	8.29	820								

N-2 3

Bridge		E	xp. Pile	9									
End/Bent													
Pile		No. 2											
Reference	e Elevation		52.37	1		•							
Depth	Blows	Stroke	Fuel S.		Comment	S							
39-40	24	7.99	8.40										
40-41	25	7.53	840										
41-42	25	7.73											
42-43	26	7.64	L L	1									
43-44	24	7.94	880										
44-45	23	8.48	900										
45-46	20	8.63	920										
46-47	20	8.78	1										
47-48	22	8.79											
48-49	28	8.78											
49-50	21	8.96											
50-51	28	8.81	1										
51-52	31	8.85											
52-53	35	8.80			Stop @	9:19 a.m							
53- 54	34	8.99											
54-55	35	8.84	ter Arris										
55-56	39	8.84											
56-57	40	8.58											
57-58	39	8.43											
58-59	40	8.73											
59-60	37	8.44	ł										
60-61	35	8.72	960										
61-62	35	8.69	970										
62-63	34	8.62	970		Smoke								
63-64	37	8.92	980		Smoke								
64-65	37	9.12			Burn.								
65-66	47	9.22			Burn.								
66-67	25	8.25											
67-68	36	8.60											
68-69	33	9.29											
69-70	14 / 25	4" ⁄ 8.80			5pa// 10	head - Change	cust						
70-71	35	9.05	N/A		ļ								
71-72	37	8.90											
72-73	37	8.83											
73-74	36	8.95											
74-75	37	8.69											
75-76	35	9,19											
76-77	36	9.13											
77-78	42	9.14					- 1						

e-start 9:22 a.m

1122 blows n @ 9:41 a.m re-start : 10:33 an

	V	T REVIEW I	DRIVING LO	G			
Bridge				N-2 (4)			
End/Bent							
Pile		Ν.					
Reference	Elevation						
Depth	Blows	Stroke	Fuel S.		Comments		
78-79	54	9.48					
79-80	63	9.35					
80-81	78	9.33		Smar	•		
81-82	90	9.60		Smare	<u> </u>		(1,1) = (1,1) = (1,1)
82-83	93	9.58		Burnin	· ·		
83-84	73/21	8"/973		Stopped	In Change cushi	n 6" @ 10:4	9 0.m
84-85	82	9.35				Start	1:04 am
85-86	76	9.22					
86-88	68	9.45	N/A				
87-88	63	9.34	1				
88-89	57	9.23					
89-90	54	8.62					
90-91	47	9.41					
91-92	45	9.55					
92-93	47	9.48	1	Stopped	at 11:18 p.m - Rem.	ve temp. and rep	ace cushion 6
93-94	78	9.18	980	re-star	rt at 12:46 pm	ţ.	
94- 95	58	9.68			1		
95-96	57	9.15		Stopped	@ 12:54 check a	auges re-star	12:56 pm
96-97	63	8.87	1000	1	-		
97-98	64	9.26					
98-99	62	9.29					
99-100	67	9.49					
5 .							
					-		1
						· · ·	
100-101	67	949					
101-107	73	9.24					
102-103	88	9.84	Gh	nped (a 1:11 pm.		
103-10-1			510	rr · · ·			
104-105		<i></i>					

FDOT SUMMARY OF PILE DRIVING OPERATIONS

Florida Department of Transportation

SUMMARY OF PILE DRIVING OPERATIONS

CARBON FIBER REINFORCED PILES

January 31, 2014

General:

On January 23rd and 24th 2014, two concrete piles reinforced with carbon fiber pre-stressing strands where driven at the SR 400/I-4 Widening from SR 44 to East of 95 project, at Bridge No. 790207 (Deer crossing) near Mile Post 127 in Volusia County. The piles were 24 inches in width and 100 feet in length and were driven at non production locations near Bent 3-1. Monitoring of the installation was performed with the use of <u>Pile Driving Analyzer</u> (PDA) and <u>Embedded Data Collector</u> (EDC) systems.

Pre-Stressed Concrete Piles:

The piles were cast on July 24th, 2013 and include 20 carbon fiber strands, 0.6 inches in diameter pulled to 39.45 kips of force, except at the corner locations where strands were pulled to 5 kips of force. From conversations with the Structures Laboratory, we understand the effective pre-stress after losses in the piles is 1,000 psi and the concrete strength was approximately 10,000 psi at the time of driving. Details of the reinforcement are included in Figures 1 and 2 below.

Figure 1 – Elevation

Figure 2 – Strand Details

Pile Driving Operations on Thursday January 23rd (Pile "N1"):

An APE D46-42 single acting diesel hammer with a ram weight of 10.1 kips was used by the Contractor to drive the piles on site. The hammer cushion consisted of two micarta plates of one inch in thickness each, placed between three layers of 0.5 inch thick aluminum plates for a total of 3.5 inches. To protect the head of the pile from impact an 8.75 inch thick pine plywood cushion was used for the initial 1308 blows. A second pile cushion of the same thickness was installed at that point which was compressed significantly and ignited towards the end of the drive. Pile cushion photographs are included in Figure 3.

The initial pile cushion experienced approximately 50 percent compression from its original thickness during the drive, and a slight eccentricity in the hammer strike was noted by the difference between the average stress (CSX), and the maximum stress recorded by an individual set of gages on one face of the pile (CSI) using the PDA system. No visible cracks were noted on the pile during this time. At approximate pile tip elevation -24 ft. pile driving was stopped to replace the pile cushion and remove the guide bars in the template, to allow continued driving without damaging the externally attached instrumentation. Upon resuming driving operations it was noted that the eccentricity on the strike had improved and a more even distribution of stress was recorded, as shown in Figure 4. The pile was subjected to a total of 2765 blows.

Figure 3 – Pile Cushions

Figure 4 – Average Stress (CSX) and maximum stress from instrumentation on one side of the pile (CSI)

Stress Limits:

Considering the reported concrete strength it became apparent that compression stresses would not control during the drive since the combination the available hammer and the local subsurface conditions would not allow the development of compression in excess of 6.25 ksi:

Maximum compressive stress (Section 455-5.11.2)

$$s_{apc} = 0.7 f_c' - 0.75 f_{pe}$$

Sapc = [0.7(10000 psi) - 0.75(1000 psi)] / 1000 = 6.25 ksi

During the drive the stress recorded near the pile tip (CSB) was significantly lower than at the top of the pile (CSX), and neither approached 6.25 ksi, although CSX did exceed the typical limit used in production pile driving under the assumption of f'c = 6,000 psi and initial pre-stress of 1,000 psi (before losses), which yields a maximum allowed compression of:

Sapc = [0.7(6000 psi) - (0.75)(0.8)(1000 psi)] / 1000 = 3.6 ksi

Figure 5 - Top (CSX) and Tip (CSB) Compressive Stresses for Pile N1

Theoretical limit on tension stress:

$$s_{apt} = 3.25 (f'_c)^{0.5} + 1.05 f_{pe}$$

Sapt = [3.25 (10000 psi)^{0.5} + 1.05(1000 psi)] / 1000 = 1.38 ksi

As shown in Figure 6, the theoretical limit on tension was exceeded (slightly) in portions of the drive between elevation -6.0 and -18.0 ft. without any visible cracking along the pile. As anticipated, high tensile stresses were induced as the pile tip entered a weaker layer in the profile, with SPT "N" blow count in the single digits and weight of hammer conditions.

Figure 6 – PDA Tension Stress and Soil Profile

Figure 7 provides a general picture of the estimated tension envelope along the pile at blow number 790 at approximate tip elevation -8.6 ft., indicating high tension values in the upper two-thirds of the object. It should be noted that production pile driving at this level of stress would not be continued without modifications (e.g., lower stroke, increased pile cushion) as it would be in violation of the Specifications.

Figure 7 – PDA Screen Capture and Tension Envelope

Pile Integrity:

In the PDA system the BTA parameter represents the percentage of pile cross section compared with the full cross section (PDA-W manual of operation, 2009). This parameter is obtained for every hammer strike, and provides a general picture of estimated pile integrity along the length of the object. Readings below 100% during the early portion of a drive, immediately after changes in pile cushion and at splice locations are not uncommon, however in this instance the latter portion of the drive where none of the above conditions existed did record slight decreases in BTA.

Relatively minor changes in BTA (in the neighborhood of 10%) can be the result of non-uniform resistance as the pile goes through layers of varying magnitudes of friction and could have caused the readings obtained by the PDA. The conservative assumption based on the proposed relationship between damage and BTA included in Figure 8, is that slight damage may have occurred near the pile tip beginning at blow number 2400 (approximate elevation -34.5 ft.), where the recorded BTA values went below 90%. As shown in Figure 8, the slight damage (87%) is estimated to have taken place at a depth of approximately 80 feet below the location of the instruments, or 15 feet above the pile tip as shown in Figure 9.

Figure 8 – BTA Parameter

Figure 9 – Wave-down / Wave-up Traces and Estimated Depth of Slight Damage (79.74' below gauges)

The EDC system uses the "MPI" or Measured Pile Integrity parameter to check for damage to the pile during driving, and as with PDA it represents the ratio of pile impedance as described by <u>Rausche and</u> <u>Goble</u>, 1988. In addition, EDC makes use of the top and tip instrumentation to measure losses in prestress at the embedded gauge levels (two pile diameters from the head and one pile diameter from the tip). Anytime a change in measured strain reaches 50 micro-strain, the MPI is dropped to a value of 50, and would continue to drop as the loss of pre-stress increases. As an example, if the EDC calculates a drop in BTA to 88% and the measured strain at the pile tip changes by 50 micro-strain from its "zero" value, the reported MPI would be 100 - 12 - 50 = 38. As shown in Figure 10 the MPI value did indicate reductions along the drive, however it never reached or dropped below 50, suggesting no significant loss of pre-stress was measured. Note that EDC reports data in terms of "displacement" (i.e., depth below template) instead of elevation.

Based on the readings obtained from both PDA and EDC it can be concluded that the pile did not suffer any major damage during the drive in terms of integrity or pre-stress level, other than the observed spalling at the pile head during the last few hammer blows.

Figure 10 – EDC MPI Record (Green Line)

From top and tip instrumentation measurements obtained by EDC it is also possible to estimate the speed of the stress wave along the pile for every hammer strike, which provides some insight into possible development of micro-cracks during the drive. Although the EDC calculated wave speed has been known to behave erratically in some instances, in this drive it follows an expected trend that begins with a (rather large) value of approximately 14,600 ft/s, followed by a decrease to approximately 13,600 ft/s at a depth of 80 feet that is believed to be caused by the propagation of both vertical and horizontal micro-cracks within the pile.

As the pile enters the bearing layer, the final portion of the drive shows a relative increase of the wave speed to approximately 14,200 ft/s as the horizontal cracks close in compression and allow the wave to travel unimpeded, followed by a slight decrease towards the end of the drive. Although the calculated wave speeds appear to be larger than normal, the relative variations suggest the development of micro-cracks, which has also been observed in conventionally reinforced piles.

Figure 11 – Pile Resistance and EDC Estimated Wave Speed vs. Depth

Towards the end of the drive the second pile cushion was no longer capable of providing adequate protection and the concrete at the pile head spalled as shown in Figure 12. Driving was stopped at that point.

Figure 12 – Diesel Covered Pile with Spalled Sections

Pile Driving Operations on Friday January 24th (Pile "N2"):

Representatives from the Structures Laboratory and Central Office were not on site during pile driving operations on January 24th. It is our understanding that the only difference in driving for this pile was the use of a thinner pile cushion (6-inches) with the intent of subjecting the second pile "N2" to higher stress than "N1". The Embedded Data Collector was not able to connect to the pile and therefore only PDA data is available.

Eccentricity of the hammer strike was recorded by PDA, and persisted with some improvement upon the subsequent two pile cushion changes as seen on Figure 13. As with the previous pile, the compressive stress delivered to the pile head did not approach the theoretical limit of 6.25 ksi, however it should be noted that the pile inspector's log indicates that concrete spalled at the pile head immediately prior to the first change in cushion at approximate pile tip elevation -16.5 ft. It is possible that the continued hammering of the pile under eccentric loading with a thin pile cushion was the cause of the noted damage. No additional spalling was recorded in the field log.

Figure 13 – Average (CSX) and Maximum Compression Stress (CSI) at the Pile Top During the Drive

Figure 14 – Spalling near the Top of Pile N2

The theoretical tension stress limit was exceeded during the early portion of the drive, between elevations +23 and +14 ft, and for a few blows in the vicinity of elevation -19 ft. It should be noted that approximately 600 blows into the drive as the pile tip approached elevation -3.0 ft. (55 feet below reference elevation) two small cracks were observed a few feet apart along the face of the pile, one of them shown on Figure 15.

The pile received approximately 2500 blows beyond that point and the PDA did not detect any major damage below the location of the gauges as reflected in the BTA estimates show in Figure 18.

Figure 15 – Vertical Crack and Close up

Figure 16 – Tip (CSB) and Top (CSX) Compression for Pile N2

Figure 18 – PDA's BTA Parameter for Pile N2

Pile Resistance:

The general subsurface profile presented layers of granular material with varying amounts of fines and shell overlying a Limestone formation that provided significant resistance, particularly during the end of drive for pile N2. At approximate elevations -29 and -49, pile resistance approached and exceeded the suggested driving resistance currently included in FDOT's Structures Design Guidelines (i.e., 900 kips) for conventional pre-stressed piles 24-inches in width. It is interesting to note that although the suggested limit was exceeded by approximately 800 kips, overall the reinforcement performed well, with spalling occurring only near the pile head in both test piles under eccentric loading of the hammer strike. Figure 19 summarizes the resistance (pile capacity) recorded during both drives.

Figure 19 – Pile Resistance vs. Elevation

Summary:

- Two, 24 inch wide, 100 foot long pre-stressed concrete piles reinforced with Carbon Fiber strands were driven in Volusia County, Florida, on January 23rd and 24th 2014.
- Spalling at the pile head was observed on both piles, and was probably the result of slight eccentricities in the hammer strike under high stress blows with thinner than normal pile cushions. It is difficult to estimate whether similar damage would have occurred in conventional piles, however it is likely.
- The piles were monitored with the use of the Pile Driving Analyzer (PDA) and Embedded Data Collector (EDC) systems. No major damage was detected by the PDA on either pile, or the EDC in pile N1 (the system did not collect data for pile N2).
- Both PDA and EDC recorded data that can be interpreted as minor damage, particularly near the pile tip for pile N1. However the estimates, which could be the result of progressive aggravation of vertical and horizontal micro-cracks, were not accompanied by significant losses of pre-stress during the drive.
- Overall the piles had an acceptable performance under driving conditions that exposed them to high levels of stress throughout most of the drive, and received 2765 and 3139 hammer blows, respectively.

Rodrigo Herrera, P.E.

Asst. State Geotechnical Engineer

Florida Department of Transportation

Rodrigo.Herrera@dot.state.fl.us

APPENDIX F

MOMENT CAPACITY CALCULATIONS

CALCULATIONS FOR PILE FLEXURAL STRENGTH

24" x 24" pile with 20 0.6" CFCC strands (4 corner strands stressed to different force)

En = "Enal1"

Parameters:

	16	4 corner	
	strands	strands	
Initial force =	39,45	5	k
Initial stress =	220.15	27.90	ksi
Initial strain =	0.009793	0.001241	in./in.

GUTS =	338 ksi	(Actual tensile strength likely exceeds this)
GUTS =	60.7 k	(Actual tensile strength likely exceeds this)
c =	6.385 in.	
$\beta_1 =$	0.65	
a =	4.150 in.	
f'e=	9500 psi	
e., =	0.003 in./in.	
E ₁₁₁ =	22480 ksi	(for CFCC strands)
A _{strant} =	0.1792 in ²	
b =	24 in.	
h =	24 in.	

Force in concrete = C = 0.85 f', a b :

C=	-804.3 k				
Moment of C =	7982.8 k-in.	- 1			

(Note: See column 11 below to subtract concrete force in holes due to $A_{\rm second}$ (Moment taken about h/2)

Forces in CFCC prestressing strands:

where

Effective stress in prestressing after losses (See PRESTRESS LOSS CALCULATIONS)
Effective strain in prestressing after losses = fpe / Epi
Strain in prestressing steel due to applied moment = e_c (d/c - 1)
Strain in prestressing steel at ultimate moment = ros + rosd
Stress in prestressing steel at ultimate moment = Eas x trature
Force in prestressing steel at ultimate moment = A _{strants} x f _{salue}

Nominal initial force, k	# strands	A _{strands}	d in	f _{pe} ksi	e _{se} (tension)	E _{fina} in Ain	E _{fature}	f _{ratore} ksi	F _{strants} + tens comp. k	If in comp., subtract force k	F _{stants} minus holes k	Moment about h/2 k-in.
corners @ 5 k	2	0.3584	3.64	10.7	0.000476	-0.001290	-0.000814	-18.29	-6.56	-2.89	-3.66	30.62
39.45 k	4	0.7168	3.64	200.7	0.008928	-0.001290	0.007638	171.71	123.08	-5.79	128.87	-1077.33
39.45 k	2	0.3584	6.98	200.7	0.008928	0.000281	0.009209	207.02	74.20	0.00	74.20	-372.19
39.45 k	2	0.3584	10.33	200.7	0.008928	0.001852	0.010780	242.34	86.85	0.00	86.85	-145.26
39.45 k	2	0.3584	13.67	200.7	0.008928	0.003423	0.012351	277.66	99.51	0.00	99.51	166.31
39.45 k	2	0.3584	17.02	200.7	0.008928	0.004994	0.013922	312.97	112.17	0.00	112.17	562.53
39.45 k	4	0.7168	20.36	200.7	0.008928	0.006565	0.015493	348.29	249.66	0.00	249.66	2086.81
corners @ 5 k	2	0.3584	20.36	10.7	0.000476	0.006565	0.007041	158.29	56.73	0.00	56.73	474.21
	17.4	2021/01/01/02	1	1000	1		the second second second	100 C 100 C 100 C	1		804.33	1725 69

Including forces in concrete and prestressing strands:

Sum FORCE = 0.00 k OK

Sum MOMENT = M_a = 9708.52 k-in. 809.04 k-ft

APPENDIX G

REPORT ON FIRST PILE CASTING ATTEMPT

Investigation of Carbon Fiber Composite Cables (CFCC) Prestressed Concrete Piles FDOT Research Project BDK83 977-17

Report on Pile Casting Attempt on September 10-12, 2012

FAMU-FSU College of Engineering Prepared by Kunal Joshi

Form Preparation & Setup

10th September, Monday

- The CFCC delivery was confirmed.
- Checked if the delivered materials were as per ordered.
- 2 stations for installing couplers were set up, one at each end of the pile.
- The space provided in the typical steel headers would not be enough to fit grinder for cutting CFCC (steel is torched), so wooden headers were used instead.
- Wooden headers of size 24x24 in. were set up at each of the pile ends. (Steel headers are normally used, but there was concern about damaging strands when pulling through steel holes).
- It was noted that the holes in the wooden headers were not smooth.
- The holes in the header were corrected by grinding.
- Headers were positioned in approximate locations of pile ends. (Normally they are all pushed to dead end so strands can be fed through all at same time).
 - Steel strands are usually bundled and pulled through forms with forklift. CFCC strands, however, were pulled through one at a time.
- GATE installers noted that the CFCC strands were lightweight and quick to install. 2 men easily pulled the strands the 450-ft length of the pile bed.

Strand and Spiral Placeme

- The CFCC spirals for each pile were placed in the forms.
- The CFCC spool was mounted on a rod and placed in line with the bed after the setup was checked for correct length.
 - The CFCC strands were installed in the bed. Strands were cut every 350 ft.
- The bed length was measured to be 440 ft.
- The product length was measured to be 329 ft, which includes header plywood thickness, 2 ¼ in. gap in each header, and approx. 1 ft between headers at pile ends.

Coupler Installation

11th September, Tuesday

- The couplers were set up on both stations.
- A set of materials required to install 20 couplers was placed on each station.
- Tokyo Rope demonstrated the coupler installation procedure for the first coupler.
- The steel strand was installed from the live end. The direction of twist of the steel strand matched the CFCC strand.
- One coupler was installed by the FAMU-FSU graduate students.
 - The coupler installation was then continued by GATE personnel.
- A wooden platform was provided by GATE in order to provide a working surface for the installation process.

Coupler Anstallation

Goupler Anstallation complete

estimated elongation

could accommodate

short so that the jack

Coupler Installation

- The wooden platform was changed to steel after a couple of installations for sturdiness during hammering of coupler sleeve.
- While coupler sleeves were being installed, another crew installed mesh sheets to the strands to have them ready for the couplers.
- After the installation on the live end was completed, the CFCC strand was pulled manually on the other side to remove any slack in the cable.
- Couplers were staggered by extending the CFCC strand in 3 different lengths from the ends of the outer piles. Otherwise, the couplers would not all fit in the cross-section view.

Stressing

12th September, Wednesday

- The full prestressing force was to be 70% of ultimate strength (0.70*0.118in2*355ksi = 28.9 k)
- The strands closer to the jack were to be stressed first, to avoid coupler interference due to elongation (i.e., the couplers overlap in section view).
 - One strand was prestressed to 7 kips (approx. 25% of the full prestressing force).
- A small amount of slip was observed in the CFCC strand where it exited the coupler.
- The remaining strands were stressed to 25% of final force.
- Markings were made on the CFCCs at the header and at the coupler face, to measure elongation and seating, respectively.
- The steel strands on the live end were cut again, so that the jack could accommodate the expected total elongation.

Stressing

- After the first strand (#15) was stressed to the final force, elongation was measured at the jack. The measured elongation matched well with the theoretical.
 - The second strand (#13) was stressed to the final force.
- While the jack was about to be installed on the third strand, the first CFCC strand slipped out of the coupler with the braided grip and mesh sheet still attached to the strand.
- Due to safety concerns, further stressing activities were stopped.
- The second strand was torch-cut to release the tension force.
 - The cutting and the initial coupler failure resulted in damage to the spirals and also minor damage to the surrounding strands.

Failed Coupler Analysis

- The failed coupler was taken in the GATE office for further inspection.
- The couplers from the torch-cut strand (and also the 4 couplers from the practice installation at the FDOT Lab on May 18) were dismantled using a device from Tokyo Rope.
- The couplers were removed from the casting bed. Each coupler had approx. 3 ft of CFCC strand extending from it.
- majority of the other couplers, to their R&D office for Tokyo Rope took the failed coupler, along with the further inspection.

APPENDIX H

PHOTOS

PILE SPECIMEN PRODUCTION

Figure H.1: Spool of CFCC strand

Figure H.2: Steel header used for a conventional steel-prestressed concrete pile (Replaced by wooden header for this research

Figure H.3: View of precasting bed, showing wooden headers

Figure H.4: View of precasting bed, showing bundle of CFCC spirals

Figure H.5: Casting bed with wooden headers and installed CFCC strands

Figure H.6: Couplers, before installation

Figure H.7: CFCC wedges sprayed with Molybdenum Disulfide

Figure H.8: CFCC coupler installation: wrapping the CFCC strand with mesh

Figure H.9: CFCC coupler installation: installing braid grip on CFCC strand

Figure H.10: CFCC coupler installation: placing wedges on meshwrapped CFCC strand

Figure H.11: CFCC coupler installation: marking wedges to prepare for pushing

Figure H.12: CFCC coupler installation: coupler in jacking system, ready for pushing

Figure H.13: CFCC coupler installation: pushing wedges into coupler with jacking system

Figure H.14: CFCC coupler installation: ready to screw two parts together

Figure H.15: CFCC coupler installation: screwing two parts together

Figure H.16: CFCC coupler installation: partially-completed couplers, showing 3 stages of installation

Figure H.17: CFCC coupler installation: several partially-completed couplers in precasting bed

Figure H.18: CFCC coupler installation: showing several couplers in casting bed

Figure H.19: Partial installation of several couplers

Figure H.20: Stressing end of self-stressing casting bed

Figure H.21: Non-stressing end of self-stressing casting bed 279

Figure H.22: CFCC spirals zip-tied to strands

Figure H.23: Lifting loops

Figure H.24: Showing staggered couplers, with CFCC strands already stressed, looking from stressing end

Figure H.25: Showing staggered couplers and close-up of coupler, with CFCC strands already stressed

Figure H.26: CFCC strands, spirals, and wooden headers in position; ready to cast

Figure H.27: Casting piles using self-consolidating concrete 282

Figure H.28: Strain gages S301 - S314

Figure H.29: Strain gages S320 - S326

Figure H.30: Cutting CFCC strands with a side grinder

PILE DRIVING PHOTOS

Figure H.31: End bent 3-1 on westbound bridge; Two 100-ft piles ready to be driven

Figure H.32: Smoke during Pile 1 driving

Figure H.33: Charred pile cushion, after Pile 1 driving

Figure H.34: Concrete spalling on head of Pile 1 after being driven

Figure H.35: Leaked diesel and concrete spalling on head of Pile 1 after being driven

Figure H.36: Smoke during Pile 2 driving

Figure H.37: Concrete spalling on head of Pile 2 during driving

Figure H.38: Horizontal (tension) crack in Pile 2

Figure H.39: Horizontal (tension) crack in Pile 2, on other side